期刊文献+

面向等离子体部件沉积特性的数值模拟研究

Simulation of deposition characteristics on plasma facing components
下载PDF
导出
摘要 采用粒子模拟研究方法,利用PEGASUS 程序对等离子体环境下面向等离子体部件的沉积特性进行了模拟研究。结果显示部件表面连接缝隙尺寸、表面粗糙度、粒子入射的角度以及流量对沉积影响显著。在能量较小、溅射可忽略时,能量对沉积的影响很小。粗糙度越小,沉积量越小;同一种粗糙度,不同轮廓也会使沉积发生较大变化,轮廓一致的更有利于减小沉积。该模拟对研究等离子体与材料相互作用,分析瓦片缝隙尺寸、瓦片加工工艺和等离子体参数对面向等离子体部件沉积行为的影响具有重要意义。 In this paper, the deposition characteristics of plasma facing components (PFCs) in plasma environment are simulated by using PEGASUS software with particle simulation method. The results show that the PFCs’ geometry, surface roughness, angle of incidence, and flux have a significant effect on the deposition. The influence of incident energy on deposition is small when the energy is small and sputtering is negligible. The smaller the roughness is, the smaller the deposition amount will be. With the same roughness, different contours can also cause large changes in deposition, and it is more possible to reduce deposition when the contour structures are conformable. This simulation is of great significance for investigating on interactions between plasma and PFCs, and analyzing the influence of tile gap dimensions, tile processing technology and plasma parameters on the deposition behaviors of PFCs.
作者 王亚磊 才来中 胡万鹏 WANG Ya-lei;CAI Lai-zhong;HU Wan-peng(Southwestern Institute of Physics, Chengdu 610041)
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2019年第2期119-126,共8页 Nuclear Fusion and Plasma Physics
基金 国家磁约束核聚变能发展研究专项(2015GB106001) 四川省科技厅国际合作重点项目(2016HH0006)
关键词 沉积 面向等离子体部件(PFC) 粒子模拟 PEGASUS 粗糙度 Deposition Plasma facing components Particle simulation PEGASUS Roughness Tokamak
  • 相关文献

参考文献4

二级参考文献63

  • 1陈明君,梁迎春,李洪珠,李旦.Molecular dynamics simulation on mechanical property of carbon nanotube torsional deformation[J].Chinese Physics B,2006,15(11):2676-2681. 被引量:2
  • 2Liu Y L, Zhang Y, Lu G H, et al. Vacancy Trapping Mechanism for Hydrogen Bubble Formation in Metal[ J]. Phys Rev B, 2009, 79:172 103.
  • 3Zhou H B, Liu Y L, Lu G H, First-Principles Investigation Energetics and Site Preference of He in a W Grain Boundary [ J ]. Nucl Instrum Methods Phys Res B, 2009, 267:3 189 -3 192.
  • 4Atkhamees A, Liu Y L, Lu G H, et al. First-Principles Investigation on Dissolution and Diffusion of Oxygen in Tungsten[ J]. NuclMater, 2009, 393: 508-512.
  • 5Yu Y W, Gao X,Hu J S, et al. ECR Discharge Cleaning and Followed He GDC on HT-7 Tokamak[J]. Nucl Mater, 2009, 390-391:1 051-1 054.
  • 6Gao X, Hu J S, Zhao Y P, et al. ICRF Wall Conditioning and Plasma Performance on EAST [ J]. Nucl Mater, 2009, 390 - 391:864 -868.
  • 7ITER International Organization. ITER[ EB/OL]. (2006 - 11 - 21)[2009-10-213. http: //www. iter. org.
  • 8EAST Big Science Engineering. EAST Experimental Device Smoothly Passed Acceptance Inspection [ EB/OL] (2006 - 08 -11)[2009-10-21]. http: //east. ipp. ac. cn.
  • 9Shimada M, Costley A E, Federici G, et al. Overview of Goals and Performance of ITER and Strategy for Plasma-Wall Interaction Investigation[ J]. Nucl Mater, 2005, 337 : 808 - 815.
  • 10Bolt H, Barabash V, Krauss W, et al. Materials for Plasma-Fa- cing Components of Fusion Reactors [ J ]. Nucl Mater, 2005, 329-333: 67-73.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部