期刊文献+

基于关联规则与聚类分析的储位分配问题研究 被引量:4

Research on Storage Space Allocation Based on Association Rules and Clustering Analysis
下载PDF
导出
摘要 储位分配策略是物资出入库效率的一个重要影响因素。在一个出库订单中,可能存在需求频率高的物资,也可能存在关联程度高的物资,在它们当中也会存在数量上的关联关系。从每一笔订单角度出发,建立了基于处理订单行走距离的TSP优化模型,通过数据挖掘算法得到内在的数量关系、关联关系等,最后利用回溯法求解模型得到相应的储位分配策略。研究表明,该模型提出的储位分配策略能够整体上优化订单处理速度,提高仓库的作业效率。 Storage space allocation strategy is an important influence factor of the inbound and outbound efficiency of a warehouse. For an outgoing order, there may be fast-moving materials, or highly correlated materials, or materials somewhat linked in quantity. In this paper, from the point of view of an order, we established a TSP optimization model based on the distance needed to process the order. Then through data mining, the internal quantitative relation and correlation between the materials were yielded. At the end, the corresponding storage space allocation strategy was obtained by solving the model using the backtracking method. The result showed that the storage space allocation strategy proposed by this model could optimize the overall order processing rate and improve the operation efficiency of the warehouse.
作者 朱铖程 吴兆东 张建东 Zhu Chengcheng;Wu Zhaodong;Zhang Jiandong(Chinese People's Liberation Army Troop 92678,Tianjin 300042;raduate Team of Fifth Student Brigade,Ground Force Military Transportation Academy,Tianjin 300161,China)
出处 《物流技术》 2019年第7期96-103,共8页 Logistics Technology
关键词 储位分配 关联规则 聚类分析 优化策略 storage space allocation association rules cluster analysis optimization strategy
  • 相关文献

参考文献2

二级参考文献4

  • 1[1]Han JW,Kamber M. Data Mining:Concepts and Techniques[D]. Simon Fraser University,2000.
  • 2[2]Alsabti K,Ranka S,Singh V.An efficient k-means clustering algorithm[A]. IPPS-98,Proceedings of the First Workshop on High Performance Date Mining[C]. Orlando,Florida,USA,1998.
  • 3[3]Ester M,Kriegel HP,Sander J,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[A]. Proceedings 2nd International Conference on Knowledge Discovery and Data Mining[C]. Portland,OR,1996. 226-231.
  • 4[4]Wang HX,Zaniolo C. Database System Extensions for Decision Support:the AXL Approach[A]. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery[C]. 2000. 11-20.

共引文献77

同被引文献32

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部