期刊文献+

基于网络日志的用户行为刻画与预测研究 被引量:6

Analysis and Prediction of User Behavior Based on Web Log
下载PDF
导出
摘要 采用基于相似度的特征聚类算法以及粗糙集模糊分析法,提出了基于网络日志的用户性格特征分析及行为预测方法.首先,构建标准性格特征向量库;然后,采用基于余弦相似度的特征聚类算法进行性格分析,该算法解决了适量样本情况下的机器学习中聚类的问题,使训练模板数据即使在数据不是足够大的情况下仍能提取特征;最后,采用基于粗糙集理论的模糊分析算法进行行为预测,该分析算法简化了分析过程,减少了建模中需考虑的因素,又能得出精确的结果.对比实验表明,该方法能较准确地分析不同用户性格特征和对其未来行为进行预判,并分析出可能对安全领域造成威胁的人群. The feature clustering algorithm based on similarity and the fuzzy analysis method based on rough set were used.A method of analysis and prediction of user behavior based on web log was proposed.Firstly, a standard character eigenvector library was constructed.Then, a character clustering algorithm based on cosine similarity was used for character analysis.Finally, a fuzzy analysis algorithm based on rough set theory was used to perform behavior prediction.Results showed that the method accurately analyze the personality characteristics of users and predict their future behaviors, and identify the groups that might pose a threat to the security field.
作者 康海燕 王紫豪 于爱民 谭雨轩 KANG Haiyan;WANG Zihao;YU Aimin;TAN Yuxuan(School of Information Management, Beijing Information Science and Technology University,Beijing 100192, China;Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA;Institute of Information Engineering, Chinese Academy of Sciences, Beijing100093, China)
出处 《郑州大学学报(理学版)》 CAS 北大核心 2019年第3期48-54,60,共8页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金项目(61370139) 北京市社会科学基金项目(15JGB099,15ZHA004) 高水平人才交叉培养“实培计划”(科研)基金项目(71B1810826) 信息+专项基金项目(5111823610)
关键词 网络日志 余弦相似度 粗糙集模糊分析 用户性格特征 行为预测技术 安全预警 web log cosine similarity rough set fuzzy analysis user personality trait behavior prediction technology security warning
  • 相关文献

参考文献10

二级参考文献61

  • 1江小平,李成华,向文,张新访,颜海涛.k-means聚类算法的MapReduce并行化实现[J].华中科技大学学报(自然科学版),2011,39(S1):120-124. 被引量:79
  • 2刘海玲,王利山.霍兰德职业兴趣理论及其价值分析[J].职业时空,2005,1(22):5-7. 被引量:20
  • 3余慧佳,刘奕群,张敏,茹立云,马少平.基于大规模日志分析的搜索引擎用户行为分析[J].中文信息学报,2007,21(1):109-114. 被引量:117
  • 4赵文清,朱永利,高伟华.一个基于决策粗糙集理论的信息过滤模型[J].计算机工程与应用,2007,43(7):185-187. 被引量:15
  • 5SWEENEY L.Kanonymity: a model for protecting privacy[J].Int’l Journal on Uncertainty,Fuzziness and KnowledgeBased Systems,2002,10(5): 557-570.
  • 6MACHANAVAJJHALA A,GEHRKE J,KIFER D.lDiversity: privacy beyond Kanonymity [C]∥Proc of the 22nd Int’l Conf on Data Engineering.Piscataway,NJ,USA: IEEE Computer Society,2006: 24-35.
  • 7LI N,LI T,VENKATASUBRAMANIAN S.tCloseness: privacy beyond kanonymity and ldiversity [C]∥Proc of the 23rd Int’l Conf on Data Engineering.Piscataway,NJ,USA: IEEE Computer Society,2007: 106-115.
  • 8YUN Zhu,LI Xiong,CHRISTOPHER V.Anonymization of user profiles for personalized web search [C]∥Proceedings of the 19th International Conference on World Wide Web.New York,NY,USA: ACM,2010: 1125-1126.
  • 9FUNG B C M,WANG K,CHEN R,et al.Privacypreserving data publishing: a survey of recent developments[J].ACM Computing Surveys,2010,42(4): 1-14,53.
  • 10王国胤,张清华,胡军.粒计算研究综述[J].智能系统学报,2007,2(6):8-26. 被引量:112

共引文献138

同被引文献67

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部