摘要
采用基于相似度的特征聚类算法以及粗糙集模糊分析法,提出了基于网络日志的用户性格特征分析及行为预测方法.首先,构建标准性格特征向量库;然后,采用基于余弦相似度的特征聚类算法进行性格分析,该算法解决了适量样本情况下的机器学习中聚类的问题,使训练模板数据即使在数据不是足够大的情况下仍能提取特征;最后,采用基于粗糙集理论的模糊分析算法进行行为预测,该分析算法简化了分析过程,减少了建模中需考虑的因素,又能得出精确的结果.对比实验表明,该方法能较准确地分析不同用户性格特征和对其未来行为进行预判,并分析出可能对安全领域造成威胁的人群.
The feature clustering algorithm based on similarity and the fuzzy analysis method based on rough set were used.A method of analysis and prediction of user behavior based on web log was proposed.Firstly, a standard character eigenvector library was constructed.Then, a character clustering algorithm based on cosine similarity was used for character analysis.Finally, a fuzzy analysis algorithm based on rough set theory was used to perform behavior prediction.Results showed that the method accurately analyze the personality characteristics of users and predict their future behaviors, and identify the groups that might pose a threat to the security field.
作者
康海燕
王紫豪
于爱民
谭雨轩
KANG Haiyan;WANG Zihao;YU Aimin;TAN Yuxuan(School of Information Management, Beijing Information Science and Technology University,Beijing 100192, China;Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA;Institute of Information Engineering, Chinese Academy of Sciences, Beijing100093, China)
出处
《郑州大学学报(理学版)》
CAS
北大核心
2019年第3期48-54,60,共8页
Journal of Zhengzhou University:Natural Science Edition
基金
国家自然科学基金项目(61370139)
北京市社会科学基金项目(15JGB099,15ZHA004)
高水平人才交叉培养“实培计划”(科研)基金项目(71B1810826)
信息+专项基金项目(5111823610)
关键词
网络日志
余弦相似度
粗糙集模糊分析
用户性格特征
行为预测技术
安全预警
web log
cosine similarity
rough set fuzzy analysis
user personality trait
behavior prediction technology
security warning