期刊文献+

太赫兹超材料吸收器的完美吸收条件与吸收特性 被引量:12

Perfect Absorption Conditions and Absorption Characteristics of Terahertz Metamaterial Absorber
原文传递
导出
摘要 提出了一种复合结构三频带太赫兹超材料吸收器,其对特定频率的入射太赫兹波呈现出完全吸收的特性。设计的超材料吸收器在入射角度达到50°时仍能保持良好的吸收特性。利用干涉理论分析了完美吸收发生的条件以及介质层介电常数对吸收频率的影响。进一步利用传输线理论结合干涉理论,分析了耶路撒冷十字短边长度对吸收特性的影响,结果表明:随着短边长度增加,吸收峰发生红移。实验结果与仿真、干涉理论、传输线理论中得到的结果吻合得较好,为今后超材料吸收器的设计提供了指导。 This study presents the design of a triple-band metamaterial absorber with a composite structure that can fully absorb the incident terahertz radiation at a certain frequency.The absorption remains high at incident angles up to 50°.The conditions for perfect absorption and the frequency shift caused by the permittivity of the dielectric spacer were analyzed via the interference theory.Further,the effect of the length of the Jerusalem cross on absorption was analyzed by applying the transmission line theory combined with the interference theory.With the increase of the short edge length,the absorption peak redshifts.The experimental results are consistent with those from the simulation,the interference theory,and the transmission line theory,thus the results here provide guidance for the design of a metamaterial absorber.
作者 崔子健 王玥 朱冬颖 岳莉莎 陈素果 Cui Zijian;Wang Yue;Zhu Dongying;Yue Lisha;Chen Suguo(Key Laboratory of Engineering Dielectric and Its Application,Ministry of Education,Harbin University of Science and Technology,Harbin,Heilongjiang 150080,China;School of Science,Xi'an University of Technology,Xi'an,Shaanxi 710048,China)
出处 《中国激光》 EI CAS CSCD 北大核心 2019年第6期231-236,共6页 Chinese Journal of Lasers
基金 工程电介质及其应用教育部实验室(哈尔滨理工大学)开放课题(KEY1805) 国家自然科学基金(11704310) 黑龙江省博士后科研启动基金(LBH-Q16119) 陕西省教育厅自然科学专项(17JK0541)
关键词 太赫兹技术 光谱学 超材料 干涉 传输线 terahertz technology spectroscopy metamaterial interference transmission line
  • 相关文献

参考文献5

二级参考文献88

  • 1程伟,李九生,孙超.微带方形开口环的高效太赫兹波吸收器研究[J].中国计量学院学报,2013,24(1):30-34. 被引量:1
  • 2Caloz C, Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach (New Jersey: John Wiley & Sons, Inc.) pp2,3.
  • 3Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402.
  • 4Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977.
  • 5Tao H, Padilla W J, Zhang X, Averitt R D 2011 IEEE J. Sel. Top. Quantum Electron. 17 92.
  • 6Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181.
  • 7Avitzour Y, Urzhumov Y A, Shvetset G 2009 Phys. Rev. 79 045131.
  • 8Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 07402.
  • 9Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103.
  • 10Diem M, Koschny T, Soukoulis C M 2009 Phys. Rev. B 79 33101.

共引文献31

同被引文献47

引证文献12

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部