期刊文献+

Growth mechanisms and environmental implications of carbonate concretions from the ~ 1.4Ga Xiamaling Formation, North China 被引量:6

Growth mechanisms and environmental implications of carbonate concretions from the ~ 1.4Ga Xiamaling Formation, North China
原文传递
导出
摘要 Carbonate concretions provide unique records of ancient biogeochemical processes in marine sediments, and have the potential to reflect seawater chemistry indirectly. In fine-siliciclastic settings, they preferentially form in organicrich mudstones, owing to a significant fraction of the bicarbonate required for carbonate precipitation resulted from the decomposition of organic matter in sediments. In the Member IV of the Xiamaling Formation(ca. 1.40–1.35 Ga), North China, however, carbonate concretions occur in organic-poor green silty shales(avg. TOC = ~ 0.1 wt%).In order to elucidate the mechanism of the concretion formation and their environmental implications, a thorough study on the petrographic and geochemical compositions of the concretions and their host rocks was conducted.Macro-to microscopic fabrics, including deformed shale laminae surrounding the concretions, "cardhouse"structures of clay minerals and calcite geodes in the concretions, indicate that these concretions are of early diagenetic origin prior to the significant compaction of clay minerals. The carbon isotope compositions of the concretions(-1.7‰ to + 1.5‰) are stable and close to or slightly lower than that of the contemporaneous seawater, indicating that the bicarbonates required for the concretion formation were mainly sourced from seawater by diffusion rather than produced by methanogenesis or anoxic oxidation of methane(AOM); the rare occurrence of authigenic pyrite grains in the concretions likely indicates that bacterial sulfate reduction(BSR) did not play a significant role in their formation either. Almost all the calcite in the concretions has low Mn–Fe in nuclei but high Mn–Fe in rims with average Mn/Fe ratio close to 3.3. The calcite shows positive Ce anomalies(avg. 1.43)and low Y/Ho ratios(avg. 31). This evidence suggests that Mn reduction is the dominant process responsible for the formation of calcite rims while nitrate reduction probably triggered the precipitation of calcite nuclei.Prominence of Mn reduction in the porewater likely indicates that there was sufficient oxygen to support active Mn-redox cycling in the overlying seawater. Carbonate concretions provide unique records of ancient biogeochemical processes in marine sediments, and have the potential to reflect seawater chemistry indirectly. In fine-siliciclastic settings, they preferentially form in organicrich mudstones, owing to a significant fraction of the bicarbonate required for carbonate precipitation resulted from the decomposition of organic matter in sediments. In the Member IV of the Xiamaling Formation(ca. 1.40–1.35 Ga), North China, however, carbonate concretions occur in organic-poor green silty shales(avg. TOC = ~ 0.1 wt%).In order to elucidate the mechanism of the concretion formation and their environmental implications, a thorough study on the petrographic and geochemical compositions of the concretions and their host rocks was conducted.Macro-to microscopic fabrics, including deformed shale laminae surrounding the concretions, "cardhouse"structures of clay minerals and calcite geodes in the concretions, indicate that these concretions are of early diagenetic origin prior to the significant compaction of clay minerals. The carbon isotope compositions of the concretions(-1.7‰ to + 1.5‰) are stable and close to or slightly lower than that of the contemporaneous seawater, indicating that the bicarbonates required for the concretion formation were mainly sourced from seawater by diffusion rather than produced by methanogenesis or anoxic oxidation of methane(AOM); the rare occurrence of authigenic pyrite grains in the concretions likely indicates that bacterial sulfate reduction(BSR) did not play a significant role in their formation either. Almost all the calcite in the concretions has low Mn–Fe in nuclei but high Mn–Fe in rims with average Mn/Fe ratio close to 3.3. The calcite shows positive Ce anomalies(avg. 1.43)and low Y/Ho ratios(avg. 31). This evidence suggests that Mn reduction is the dominant process responsible for the formation of calcite rims while nitrate reduction probably triggered the precipitation of calcite nuclei.Prominence of Mn reduction in the porewater likely indicates that there was sufficient oxygen to support active Mn-redox cycling in the overlying seawater.
出处 《Journal of Palaeogeography》 SCIE CSCD 2019年第3期285-300,共16页 古地理学报(英文版)
基金 supported by the National Natural Science Foundation of China (No. 41672336) the Fundamental Research Funds for the Central Universities (No. 2652018005 and 2652017050)
关键词 Mid-Proterozoic CARBONATE CONCRETION Early DIAGENESIS Manganese reduction BICARBONATE Mid-Proterozoic Carbonate concretion Early diagenesis Manganese reduction Bicarbonate
  • 相关文献

参考文献1

二级参考文献5

共引文献5

同被引文献104

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部