摘要
设dSn+1是n+1维单位de Sitter空间,且M是dSn+1中紧致无边的类空超曲面.记S为M的第二基本形式模长平方,ΔS是S的拉普拉斯.利用关于ΔS的一个已知估计公式,证明了如果M的平均曲率H是常数,则必有H≡S≡0,即M必是全测地的.
Let dS n+1 be the n+1 -dimensional unit de Sitter and M be a compact space-like hyper-surface without boundary in dS n+1 . Denote by S the squared length of the second form for M and by Δ S the Laplacian for S. In this paper we applied a known estimation formula for Δ S to prove that if the mean curvature H of M is a constant,then H≡S≡0 ,that is M must be totally geodesic.Our result improves some relevant theorem in a previous paper.
作者
王琪
WANG Qi(School of Mathematics and Information Science,Guiyang University,Guiyang 550005,China)
出处
《云南师范大学学报(自然科学版)》
2019年第4期22-24,共3页
Journal of Yunnan Normal University:Natural Sciences Edition
基金
贵阳市科技局专项资金资助项目(GYU-KYZ(2018)04)
关键词
单位de
SITTER空间
紧致类空超曲面
常平均曲率
全测地性
Unit de Sitter space
Compact space-like hyper-surface
Constant mean curvature
Totally geodesic property