期刊文献+

基于煤化工的多能耦合系统全寿命周期经济评估数学模型构建 被引量:3

Establishment of Mathematical Model for Life Cycle Economic Assessment of Multi-energy Coupled System Based on Coal Chemical Industry
下载PDF
导出
摘要 本文以多功能耦合系统为基本对象,重点围绕其经济性评估问题展开探讨,由此提出可行的评估方案,实现对多能耦合系统全寿命综合性评估.共分为三大部分,首先总体概述有关于多能耦合系统的集成方案;在此基础上将全寿命周期净利润作为核心目标,提升风电的消纳能力,总结了系统约束条件,基于上述内容得到了经济评估数学模型,与此同时还展开了有关于多能耦合系统净利润的分析;最后,引入了实际风电场与煤化工企业,基于上述所提出的评估模型展开了经济性分析. In this paper,the multi-functional coupling system is taken as the basic object,focusing on the economic evaluation of the multi-functional coupling system,and a feasible evaluation scheme is put forward to realize the comprehensive life-cycle evaluation of the multi-functional coupling system. It is divided into three parts. Firstly,the integrated scheme of multi-energy coupling system is summarized in general. On this basis, the net profit of life cycle is taken as the core objective to improve the absorp. tion capacity of wind power,and the system constraints are summarized. Based on the above contents, the mathematical model of economic evaluation is obtained. At the same time,the analysis of net profit of multi-energy coupling system is carried out. Finally,the actual wind farm and coal chemical enterpris. es are introduced,and the economic analysis is carried out based on the evaluation model proposed above.
作者 马书红 MA Shu-hong(Shaanxi Institute of Technology,Xi'an Shaanxi 710300,China)
出处 《粘接》 CAS 2019年第6期132-135,共4页 Adhesion
关键词 多能耦合系统 数学评估模型 全寿命周期 multi-energy coupled system mathematical assessment model life cycle
  • 相关文献

参考文献5

二级参考文献43

  • 1邵迪,胡敏,代正华,龚欣.风电/煤制天然气集成系统的研究[J].化学世界,2012,53(S1):70-71. 被引量:3
  • 2罗强,游大海,何红艳.基于嵌入式GUI的电力自动化设备人机界面设计[J].电力自动化设备,2004,24(9):63-67. 被引量:15
  • 3谢继东,李文华,陈亚飞.煤制氢发展现状[J].洁净煤技术,2007,13(2):77-81. 被引量:21
  • 4Francois B, Hissel D, Iqbal M T. Dynamic modelling of a fuel cell and wind turbine DC-linked power system[C]//2005 Electrimacs Confe- rence. Hammamet, Tunisia: [s.n.], 2005: 17-20.
  • 5蒋东方.氢氧联合循环与风能耦合发电系统可行性分析[M].北京:华北电力大学,2012:15-30.
  • 6Tao Z, Bruno F. Real-time emulation of a hydrogen production process for assessment of an active wind-energy conversion system[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 737-747.
  • 7Delarue P, Bouscayrol A, Tounzi A, et al. Modelling control and simulation of an overall wind energy conversion system[J]. Renewable Energy, 2003, 28(8): 1169-1185.
  • 8Zhou T, Francois B, Labbal M, et al. Modeling and control design of hydrogen production process by using a causal ordering graph for wind energy conversion system[J]. International Journal of Hydrogen Energy, 2009, 34(1): 21-30.
  • 9Vanhanen J P, Lund P D. Computational approaches for improving seasonal storage systems based on hydrogen technologies[J]. Hydro- gen Energy, 1995, 20(17): 575-585.
  • 10Agbossou K, Kolhe M, Hamelin J, et al. Performance of a stand alone renewable energy system based on energy storage as hydrogen[J]. IEEE Transactions on Energy Conversion, 2004, 19(3): 633-640.

共引文献97

同被引文献38

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部