期刊文献+

基于光流法的深度学习在工业运动检测的应用 被引量:3

Deep Learning on Optical Flow in Industrial Motion Detection Application
下载PDF
导出
摘要 工业现场中常需要根据生产过程中目标的运动或变化状态进行控制、联锁或报警。通过视频图像的运动检测识别技术,可有效地代替人工作业,提高生产自动化水平。文中利用光流法成熟有效的运动特征提取能力,以及深度学习技术在图像分类识别上的突出表现,将两者相结合,利用AlexNet网络对可视化光流处理后的工业对象视频图像进行迁移学习的训练,取得了良好的识别效果,并成功应用在生产环境中。 In industrial field,it is often necessary to control,interlock or alarm according to the moving or changing state of the target in the production process. Video image motion detection and recognition technology can effectively replace manual work and improve the level of production automation. In this paper,using the mature and effective motion feature extraction ability of optical flow method and the outstanding performance of deep learning technology in image classification and recognition,combining the two methods,AlexNet network is used to train the transfer learning of the video images of industrial objects after visual optical flow processing,and good recognition effect is achieved,and successfully applied in production environment.
作者 周曼 刘志勇 应正波 杨鲁江 裘坤 ZHOU Man;LIU Zhi-yong;YING Zheng-bo;YANG Lu-jiang;QIU Kun(Zhejiang SUPCON Co.,Ltd.,Hangzhou 310053,China)
出处 《自动化与仪表》 2019年第7期92-95,共4页 Automation & Instrumentation
基金 国家重点研发计划项目(2018YFB1702201)
关键词 运动检测 Gunnar Farneback光流算法 AlexNet 迁移学习 motion detection Gunnar Farneback optical flow AlexNet transfer learning
  • 相关文献

参考文献2

二级参考文献17

  • 1CAO X, BOVIK A C, WANG Y, et al. Converting 2D Video to 3D: An Efficient Path to a 3D experience[J]. IEEE Transactions on MultiMedia, 2011, 18(4): 12-17.
  • 2ZHANG L, VAZQUEZ C, KNORR S. 3D-TV Content Creation: Automatic 2D-to-3D Video Conversion [J]. IEEE Transactions on Broadcasting, 2011, 57 (2) : 372- 383.
  • 3BATTIATO S, CURTI S, LA C M, et al. Depth Map Generation by Image Classification [C]//Proceedings of Photo-optical lnstrumentalion Engineers (SPIE). Wash- ington, USA: SPIE ,2004195-104.
  • 4ZHUO S, SIM T. On the Recovery of Depth from a Single Defocused Image[C]// Proceedings of Computer Analysis of Images and Patterns(CAIP2009). Springer Berlin Hei- delberg: CAIP,2009:889-897.
  • 5COZMAN F, KROTKOV E. Depth from Scattering[C]// Proceedings of IEEE 1997 Computer Vision and Pattern Recognition. New York: IEEE Computer Society, 1997: 801-806.
  • 6BARJATYA A. Block Matching Algorithms for Motion Estimation[J]. IEEE Transactions on Evolulion Computa- tion, 2004,8 (3) : 225-239.
  • 7DIAMANTAS S C, OiKONOMIDIS A,CROWDER R M. Depth Computation Using Optical Flow and Least Squares [C]// Proceedings of 2010 IEEE/SICE International Sym- posium. New York: IEEE Prees ,2010:7- 12.
  • 8VISENTINI-SCARZANELLA M, STOYANOV D, YANG G Z. Metric Depth Recovery from Monocular Images Using Shape-from-Shading and Speeularities [C]// Proceedings of 19th IEEE International Confer- ence on Image Processing (ICIP). New York: IEEE Prees, 2012 : 25-28.
  • 9FORSYTH D A. Shape from Texture and Integrability [C]// Proceedings of 18th IEEE International Conference on Computer Vision (ICCV 2001 ). New York: IEEE Prees, 2001:447-452.
  • 10REDERT A. Creating a Depth Map[P]. Royal Philips E- lectronics, the Netherlands. Patent ID:WO2005091221 A1. 2005.

共引文献19

同被引文献15

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部