摘要
研究一类三阶非线性模糊差分方程正解的存在性及渐近行为xn+1=xn-2/A+xn-2xn-1xn,n=0,1,…其中(xn)是正模糊数数列,A及初始值x-2,x-1,x0是正模糊数.最后给出数值例子以验证理论结论的正确性.
This paper is concerned with the existence,asymptotic behavior of the positive solutions of a third order fuzzy nonlinear difference equation x n+1 = x n-2/A+x n-2 x n-1 x n,n=0,1,… where (xn) is a sequence of positive fuzzy numbers,A and the initial values x -2,x -1,x 0 are positive fuzzy numbers.Finally an illustrative example is given to demonstrate the effectiveness of the results obtained.
作者
张千宏
王贵英
ZHANG Qian-hong;WANG Gui-ying(School of Mathematics and Statistics,Guizhou University of Finance and Economics,Guiyang 550025,China)
出处
《西南师范大学学报(自然科学版)》
CAS
北大核心
2019年第7期1-7,共7页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11761018)
贵州财经大学重点项目(2018XZD02)
关键词
模糊差分方程
平衡点
有解性
持久性
渐近稳定
fuzzy difference equation
equilibrium point
bounded
persistence
asymptotic stability