期刊文献+

机器学习的五大类别及其主要算法综述 被引量:27

Survey on Five Tribes of Machine Learning and the Main Algorithms
下载PDF
导出
摘要 机器学习作为一门源于人工智能和统计学的学科,是当前数据分析领域重点研究方向之一。首先通过追溯机器学习起源和介绍不同算法在求解策略上的启发性思路,讨论五类机器学习的发展及其主要算法在评价方法和优化方式上的实现,进一步总结归纳各算法适用领域和算法优劣,最后指出各算法克服自身缺陷的最新进展和未来实现多算法融合的研究方向。 Machine learning is a discipline derived from artificial intelligence and statistics,and it has been one of the key research directions in the field of data analysis.This paper introduces the inspiring ideas of different machine learning algorithms in the strategy through their origins,and the realization of five tribes of machine learning and the main algorithms including evaluation function and optimization method.Then applicable fields of each algorithm and both advantages and disadvantages of the algorithm are summarized.Finally this paper points out the latest progresses of each algorithm to overcome its own defects and the future research direction of multi-algorithm fusion.
作者 李旭然 丁晓红 LI Xu-ran;DING Xiao-hong(School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《软件导刊》 2019年第7期4-9,共6页 Software Guide
关键词 机器学习 学习算法 集成方法 增强理论 元学习 machine learning learning algorithm ensemble method reinforcement learning meta learning
  • 相关文献

参考文献8

二级参考文献196

  • 1李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1232
  • 2孙大飞,Dempster A P, Laird N M, et al. Maximum likelihood from Incomplete data via the EM algorithm[J ]. Journal of the Royal Statistical Society, Series B, 1997,39(1) :1-38.
  • 3Meng X L, Rubin D B. Recent Extension to the EM algorithm[M]. Bayesian Statistics 4. Oxford: Oxford University Press, 1992: 307 - 320.
  • 4Andrieu C,Doucet A. Online Expection- Maximization Type Algorithms for Parameter Estimation in General State Space Models[C]//in Proc. IEEE Int. Conf. Aooustics, Speech, and Signal Processing. [s. l. ] : [s. n. ] ,2003:69- 72.
  • 5贾沛璋,朱征桃.最优估计及其应用[M].北京:科学出版社,1994.
  • 6Parzen E. On the estimation of a probability density function andmode [ J ]. Annals of Mathematical Statistics, 1962,33 : 1065 - 1076.
  • 7Wang A P, Wang H. Minimising entropy and mean tracking control for affine nonlinear and non - Gaussian dynamic stochastic system[J]. IEE Proceedings Control Theory & Application, 2005,151 (4) : 405 - 520.
  • 8Wang A P, Wang H, Tan J. Optimal Filtering for Multivariable Stochastic System via Residual Probability Density Function Shaping[ C]//Proceedings of SICE 2005 Annual Corderence. [s. l. ] : [s. n. ] ,2005:215 - 219.
  • 9Guo L, Wang H. Mininum entropy filtering for multivariate stochastic systems with non- Gaussian noises [ J ]. IEEE Transactions on Automatic Control,2006,51(4) :670 -695.
  • 10[19]James A Highsmith.Adaptive Software Development[M].北京:清华大学出版社,2003.

共引文献1825

同被引文献328

引证文献27

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部