期刊文献+

热声激励下燃烧室热声固耦合特性数值研究

Numerical study on thermoacoustic of combustion chamber subjected to thermoacoustic exciation
下载PDF
导出
摘要 为研究燃烧室结构对热、声激励的响应,基于多场耦合瞬态模拟技术,建立燃烧室结构有限元模型,模拟了瞬态条件下热、声激励下燃烧室结构的热应力、温度场和结构应力。结果表明:受热声耦合作用的影响,靠近出口处的声压幅值下降约75%。燃烧室所受热应力与声压应力量级相同,两者对结构的影响皆不可忽略。燃烧室结构对声压的响应与声压激励频率有关。当激励频率接近燃烧室固有频率时,声压应力将显著提高并出现共振。 A simulation model has been established based on the multi-field coupling transient simulation technology in order to study the combuster structural response to the thermo-acoustic excitation.The thermal stress,temperature field and structural stress of combuster structure under thermal and acoustic excitation under transient conditions are simulated.The results show that,the acoustic pressure distribution at different locations within the combuster is uneven,and the amplitude of the acoustic pressure near the outlet is significantly reduced,the decrease is about 75%under the influence of thermoacoustic coupling.The thermal stress is the same as the sound pressure stress level,and the influence of both on the structure could not be neglected.The response of the combuster structure to the sound pressure is related to the frequency of the sound pressure excitation.When the excitation frequency is close to the natural frequency of the combuster,the sound pressure stress will be significantly improved.
作者 杨光 田晶 艾延廷 关鹏 韩斌 YANG Guang;TIAN Jing;AI Yan-ting;GUAN Peng;HAN Bin(Liaoning Key Laboratory of Advanced Measurement and Test Technology for Aircraft Propulsion System,ShenyangAerospace University,Shenyang 110136,China;School of Power and Energy,Northwest Polytechnic University,Xi′an710072,China;Tooling Manufacturer,AECC Shenyang Liming Aeraengine Co.,LTD,,Shenyang 110034,China)
出处 《沈阳航空航天大学学报》 2019年第3期14-21,共8页 Journal of Shenyang Aerospace University
基金 国家自然科学基金(项目编号:11702177) 辽宁省自然科学基金(项目编号:20180550560)
关键词 热应力 声压 燃烧室 耦合特性 数值研究 thermal stress acoustic pressure combustion chamber coupling characteristics numerical study
  • 相关文献

参考文献6

二级参考文献63

  • 1焦树建.关于目前世界上IGCC发展情况与趋势的评论[J].燃气轮机技术,2004,17(3):1-5. 被引量:26
  • 2焦树建.日本的IGCC示范工程与研发工作——兼论我国IGCC的发展途径[J].燃气轮机技术,2006,19(1):15-20. 被引量:11
  • 3洪流,Fusetti A,Rosa M D,Oschwald M.液氧/甲烷火焰和燃烧不稳定性试验[J].推进技术,2007,28(2):127-131. 被引量:10
  • 4杨V 安德松WE.张宝炯 洪鑫 陈杰 译.液体火箭发动机燃烧不稳定性[M].北京:科学出版社,2001..
  • 5[3]Brandt D E,Wesorick R R.GE Gas Turbine Design Philosophy,GE Industrial & Power Systems,Schenectady,NY
  • 6[4]Lefebvre H.Gas Turbine Combustion.Edwards Brothers,MI,1998.257-274
  • 7[5]Lieuwen T.Online Combustor Stability Margin Assessment Using Dynamic Pressure Data.ASME Paper GT2004-53149
  • 8[14]BATHE K J,ZHANG H,JI S H.Finite element analysis of fluid flows fully coupled with structural interactions[J].Computers & Structures,1999,72:1-16.
  • 9[15]BATHE K J,ZHANG H.A flow-condition-based interpolation finite element procedure for incompressible fluid flows[J].Computers & Structures,2002,80:1267-1287.
  • 10[16]KOHNO H,BATHE K J.A nine-node quadrilateral FCBI element for incompressible fluid flows[J].International Journal for Numerical Methods in Fluids,2006,51:673-699.

共引文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部