期刊文献+

基于Fe2+:ZnSe微米粉末嵌入ZBLAN玻璃的4.32μm中红外随机激光

4.32 μm mid-infrared random lasing based on ZBLAN glass containing micro-sized Fe2+:ZnSe powder
下载PDF
导出
摘要 在室温下制备了基于Fe^2+:ZnSe微米粉末嵌入ZBLAN(ZrF4-BaF2-LaF3-AlF3-NaF)玻璃的中红外随机激光器,随机激光的中心波长约为4.32μm。Fe^2+:ZnSe微米粉末的平均晶粒尺寸为3.54μm,XRD结果表明Fe^2+:ZnSe微米粉末为立方闪锌矿结构。在2.94μm纳秒脉冲激光泵浦下,随机激光的阈值为557.89mJ/cm^2。随着泵浦能量的增加,随机激光多纵模的特点也随之出现。泵浦能量超过阈值后,随机激光的光谱线宽为10nm,脉冲宽度为50ns。这项工作为获得稳定的中红外激光源提供了一种简单而经济的方法,将粉末嵌入固体基质中可以对粉末起到稳定的作用,这种方法在制备中红外光子器件和光纤激光器上具有潜在前景。 Mid-infrared random laser based on Fe^ 2+ doped ZnSe powders embedded in ZBLAN glass with a center wavelength at ~4.32 μm is developed at room temperature.The average grain size of micro-sized Fe^ 2+:ZnSe powder is 3.54 μm,and the XRD results indicated that the micro-sized Fe^ 2+:ZnSe powders are of cubic zinc blende structure.The threshold of the random laser is 557.89 mJ/cm 2 under the 2.94 μm nanosecond pulse laser.The characteristic of the multi-longitudinal mode of random laser appears with the increasing of pump energy.As the pump energy increases until it exceeds the threshold,the random laser has a narrow spectral line-width of 10 nm,and the steady pulse width drops to 50 ns.This work provides a simple and cost-effective way to obtain stable mid-IR laser source.Embedding powders into solid host can be an appropriate method to stabilize powders,especially for middle-infrared lasing powders,which have the potential use for fabricating middle-infrared photonic devices and fiber laser.
作者 邓丽娟 冯国英 张弘 戴深宇 DENG Li-juan;FENG Guo-ying;ZHANG Hong;DAI Shen-yu(Institute of Laser and Micro/Nano Engineering,College of Electronics and Information Engineering, Sichuan University,Chengdu 610065,China)
出处 《激光与红外》 CAS CSCD 北大核心 2019年第7期849-854,共6页 Laser & Infrared
基金 国家自然科学基金项目(No.11574221)资助
关键词 Fe:ZnSe微米粉末 ZBLAN玻璃 中红外 随机激光 Fe:ZnSe micro-sized powder ZBLAN glass mid-infrared random laser
  • 相关文献

参考文献1

二级参考文献14

  • 1WERLE P,SLEMR F,MAURER K. Near-and midinfrared laser-optical sensors for gas analysis[J].Optics and Laser in Engineering,2002,(2-3):101-114.
  • 2FRIED A,HENRY B,WERT B. Laboratory,groundbased,and airhorne tunable diode laser systems:performance characteristics and applications in atmospheric studies[J].Applied Physics B,1998,(03):317-330.doi:10.3109/01443615.2011.593646.
  • 3GMACHL C,STRAUB A,COLOMBELLI R. Singlemode.tunable distributed feedback and multiple wavelength quantum cascade lasers[J].IEEE Journal of Quantum Electronics,2002,(06):569-581.doi:10.1109/JQE.2002.1005407.
  • 4BAKHIRKIN Y A,KOSTEREV A A,CURL R F. Sub-ppbv nitric oxide concentration measurements using cw room temperature quantum cascade laser based integrated cavity spectroscopy[J].Applied Physics B,2006,(01):149-154.doi:10.1007/s00340-005-2058-0.
  • 5ARMIN L. Quantum cascade lasers,systems,and applications in Europe[J].Spie,2005.122-133.doi:10.1038/cdd.2011.71.
  • 6WEIDMANN D,KOSTEREV A A,ROLLER C. Monitoring of ethylene by a pulsed quantum cascade laser[J].Applied Optics,2004,(16):3329-3334.doi:10.1364/AO.43.003329.
  • 7CORNELIA F,MARKUS W S. Mid-IR difference frequency generation[J].Topics Applied Physics,2003.97-143.
  • 8RICHTER D,FRIED A,WERT B P. Development of a tunable mid-IR difference frequency laser source for highly sensitivc airborne trace gas detection[J].Applied Physics B,2002,(2-3):281-288.doi:10.1007/s00340-002-0948-y.
  • 9GOLDBERG L,KOPLOW J,LANCASYER D G. Midinfrared difference frequency gcneration source pumped by a 1.1 ~ 1.5 μm dual-wavclength fiber amplifier for trace gas detection[J].Optics Letters,1998,(19):1517.doi:10.1364/OL.23.001517.
  • 10JUNDT D. Ternperature-dependent selhneier equation for the index of refraction,ne,in congruent lithium niobate[J].Optics Letters,1997,(20):1553-1555.doi:10.1364/OL.22.001553.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部