期刊文献+

小样本的多模态遥感影像高层特征融合分类 被引量:6

Multimodal Remote Sensing Image Classification with Small Sample Size Based on High-Level Feature Fusion
原文传递
导出
摘要 在使用深度学习模型研究遥感影像地物分类问题时,某些地物的遥感影像可用于训练的样本很少。同时,多样化的遥感影像获取方式产生了大量不同空间分辨率的多模态遥感影像。融合这些多模态遥感影像,弥补样本量少导致分类精度低的缺陷,是小样本的遥感影像高精度分类领域中亟待解决的问题。针对上述问题,提出了考虑两种空间分辨率遥感影像相关关系的融合分类方法。首先,使用两个并行的深度学习网络分别提取两种空间分辨率影像的高层特征;其次,将提取到的高层特征通过融合方法进行融合;最后,得到融合后的高层特征作为输入,训练整个融合分类模型。实验表明,不同融合策略的分类精度不同,本文提出的基于高层特征级别的融合策略可以有效提高分类精度。 The training sample size for some objects on the ground is quite small when applying a deep learning model to study the classification of remote sensing images.Meanwhile,diversified remote sensing image acquisition methods generate numerous multimodal remote sensing images with different spatial resolutions.Fusing these multi-modal remote sensing images to remedy the small sample size defect and achieve a highly precise classification of remote sensing images is an urgent problem to be solved.To this end,the present study proposes a fusion method for image classification based on the correlation of two spatial resolutions.A deep learning network is utilized to extract the high-level features of the remote sensing images in two spatial resolutions.Two types of high-level features are integrated via the proposed fusion strategy and further used as the input to train the whole network model.The experimental results demonstrate that the proposed fusion algorithm can achieve high classification accuracy.Further,because different fusion rules have different classification accuracies,a suitable selection can improve the classification accuracy.
作者 贺琪 李瑶 宋巍 黄冬梅 何盛琪 杜艳玲 He Qi;Li Yao;Song Wei;Huang Dongmei;He Shengqi;Du Yanling(College of Information Technology,Shanghai Ocean University,Shanghai 201306,China;Shanghai University of Electric Power,Shanghai 200090,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2019年第11期109-115,共7页 Laser & Optoelectronics Progress
基金 国家自然科学基金(41671431) 海洋大数据分析预报技术研发预报技术研发基金(2016YFC1401902) 上海市科委部分地方院校能力建设项目(17050501900)
关键词 图像处理 深度学习 高层特征融合 多模态遥感影像 小样本 image processing deep learning high-level feature fusion multimodal remote sensing image small sample size
  • 相关文献

参考文献7

二级参考文献36

共引文献123

同被引文献18

引证文献6

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部