摘要
提出一种特征感知的三维点云简化方法。通过构造八叉树搜索每个点的k近邻点,并计算每个点的法向量,以此检测并保留边缘点;使用期望最大化算法对点云进行聚类,并确定高曲率的点;使用边缘感知的有向Hausdorff距离方法进行点云精简,合并前述点云并删除重复点,实现模型简化。该方法适用于不同曲率变化的模型,并且能够在保留尖锐特征的同时显示模型整体轮廓。实验结果表明,该方法不仅能够保留原始模型的几何特征和轮廓外貌,而且有效地避免了简化过程中的孔洞现象,几何简化误差较低。
In this paper,we propose a simplified method of feature-aware for a three-dimensional point cloud.First,the k-nearest neighbor points of each point are searched by constructing an octree,and the normal vector of each point is calculated to detect and preserve the edge points.Then,the expectation maximization algorithm is utilized to cluster the point clouds and determine the points with high curvature.Finally,these point clouds are simplified by a method which utilizes the edge-aware directed Hausdorff distance,the above point clouds are merged,the duplicate points are deleted,and thus,the model is simplified.The proposed method is suitable for the models with different curvature changes,and it can display the overall contour of the model while retaining the sharp features.The experimental results show that the proposed method not only preserves the geometric features and contour appearance of the original model,but also effectively avoids the hole phenomenon in the simplification process.The geometric simplification error of the method is considerably low.
作者
王成福
耿国华
胡佳贝
张勇杰
Wang Chengfu;Geng Guohua;Hu Jiabei;Zhang Yongjie(School of Information Science and Technology,Northwest University,Xi′an,Shaanxi 710127,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2019年第11期130-137,共8页
Laser & Optoelectronics Progress
基金
国家自然科学基金(61731015)
国家重点研发项目(2017YFB1402103)
陕西省产业创新链项目(2016TZC-G-35)
西北大学2017研究生自主创新项目(YZZ17182)
青岛市自主创新重大专项(2017-4-3-2-xcl)
关键词
图像处理
数字博物馆
三维点云简化
期望最大化算法
有向Hausdorff距离
image processing
digital museum
three-dimensional point cloud simplification
expectation maximization algorithm
directed Hausdorff distance