期刊文献+

正弦水面平面波/高斯波束散射回波谱峰特征分析

Spectral Peak Characteristics of Plane/Gaussian Beam Scattering from Sinusoidal Water Waves
下载PDF
导出
摘要 展示平面波/高斯波束照射时正弦水面电磁散射回波的多普勒谱峰分布特征.基于Bragg共振散射理论可知,水面电磁散射回波多普勒谱峰所对应的频率由水波相速度决定,然而,最近相关水槽实验发现:正弦水面散射回波的多普勒谱不仅包含与水波相速度相对应的Bragg共振峰,而且还存在等频率间距的谐波峰.为了能更好地解释这一现象的物理或数学本质,文中基于粗糙面电磁散射一阶小斜率近似理论(SSA-I)分别推导给出了平面波/高斯波束照射时正弦水面后向电磁散射回波的频谱模型.理论模型结果显示,谐波峰是由于频谱分析过程中频率泄漏效应导致的,而不是水面回波真实的物理现象. The spectral peaks of electromagnetic (EM) scattering echoes are presented when the sinusoidal water surface is illuminated by a plane EM wave and a Gaussian beam.It is generally recognized that the Doppler frequency corresponding to the spectral peak is determined by phase velocity of the water wave.However,the results of the recent wave tank experiment demonstrate that not only the spectral peak corresponding to the phase velocity of water wave but also other equally spaced harmonic peaks can also be found when an EM wave is illuminated on a sinusoidal water surface.To better explain these phenomena,a theoretical model for the spectra from the simple water wave are derived by the first-order small slope approximation theory (SSA-I).The theoretical model results show that the harmonic peaks are caused by the frequency leakage effect,rather than the real physical phenomenon of the water surface echoes.
作者 张彦敏 王运华 ZHANG Yan-min;WANG Yun-hua(School of Information Science & Engineering,Ocean University of China,Qingdao 266100,China;Laboratory for Regional Oceanography and Numerical Modeling,Qingdao National Laboratory for Marine Science and Technology,Qingdao 266237,China)
出处 《聊城大学学报(自然科学版)》 2019年第5期7-14,共8页 Journal of Liaocheng University:Natural Science Edition
基金 国家重点研发计划(2016YFC1401007) 国家自然科学基金项目(41576170) 山东省-国家自然科学基金联合基金项目(U1606405)等资助
关键词 电磁散射 多普勒谱 正弦水面 electromagnetic scattering Doppler spectrum sinusoidal water surface gaussian beam
  • 相关文献

参考文献3

二级参考文献20

  • 1Chapron B, Collard F, Ardhum F. 2005. Direct measurements of ocean surface velocity from space: interpretation and valida- tion. Journal of Geophysical Research, 110(C7): C07008.
  • 2Donelan M A, Anctil F, Doering I C. 1992. Simple method for calculat- ing the velocity field beneath irregular waves. Coastal Engineer- ing, 16(4): 399-424.
  • 3I . Fuks I ~vl, Voronovich A G. 2002. Radar backscattering from Gersmer's sea surface. Waves in Random Media, 12(3): 321-339.
  • 4Hayslip A R, Johnson l T, Baker G R. 2003. Further numerical studies of backscattering from time-evolving nonlinear sea surfaces. IEEE fransactions on Geoscience and Remote Sensing, 41(10): 2287-2293.
  • 5Hisaki Y. 2003. Doppler spectrum of radio wave scattering from ocean-like moving surfaces for a finite illuminated area. Inter-national lournal of Remote Sensing, 24(15): 3075-3091.
  • 6Hwang P A, Sletten M A, Toporkov ] V. 2010. A note on Doppler pro- cessing of coherent radar backscatter from the water surface: with application to ocean surface wave measurements. Iournal of Geophysical Research, 115(C3): C03026.
  • 7lohannessen J A, Kudryavtsev V, Aldmov D, et al. 2005. On radar ima- ging of current features Part 2: mesoscale eddy and current front detection. Journal of Geophysical Research, 110(C7): C07017.
  • 8Johannessen J A, Kudryavtsev V, Akimov D, et al. 2005. On radar ima- ging of current features Part 1: model and comparison with ob- servations.Journal of Geophysical Research, 110(C7): C07016.
  • 9Johnson J T, Burkholder R J, Toporkov J V, et al. 2009./~ numerical study of the retrieval of sea surface height profiles from low grazing angle radar data. IEEE Transactions on Geoscience and Remote Sensing, 47(6): 1641-1650.
  • 10lohnson J T, Toporkov J VI Brown G S. 2001. A numerical study of backscattering from time-evolving sea surfaces: comparison of hydrodynamic models. IEEE Transactions on Geoscience and Remote Sensing, 39(11): 2411-2420.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部