期刊文献+

电子商务协同推荐算法的设计与应用

The Design and Application of E-commerce Collaborative Recommendation Algorithm
下载PDF
导出
摘要 电子商务的快速增长导致产品过多,而网络上的客户对他们所接触的产品很难取舍。为了解决此问题,各种推荐方法应运而生。协作过滤(CF)是其中最成功的推荐方法,其被广泛应用于电子商务中,然而这种方法的稀疏性和可扩展性可能导致推荐的结果较差。提出了一种基于Web使用挖掘和产品分类的推荐方法,以提高当前基于CF方法的推荐系统的推荐质量和系统性能。Web使用挖掘通过跟踪客户在Web上的购物行为来填充评级数据库,从而产生质量更好的建议。产品分类法用于通过评级数据库的降维来提高搜索最近邻居时的性能。对实际电子商务数据的几项实验表明,与其他CF方法相比,所提出的方法提供了更高质量的建议和更好的性能。 The rapid growth of e-commerce has led to too many products,and customers on the network have difficulty in choosing the products they are exposed to.In order to overcome this problem,various recommended methods have emerged.Collaborative Filtering(CF)is one of the most successful recommended methods,and it is widely used in e-commerce.However,it also exposes some well-known limitations,such as sparsity and scalability,which may result in poor recommendation.This paper proposes a recommendation method based on Web usage mining and product classification to improve the recommendation quality and system performance of the current CF-based recommendation system.Web usage mining populates the rating database by tracking customer shopping behavior on the Web,resulting in better quality recommendations.The product taxonomy is used to improve the performance of searching for nearest neighbors by reducing the dimensionality of the rating database.Several experiments on actual e-commerce data show that the proposed method provides higher quality recommendations and better performance than other CF methods.
作者 张晓艳 ZHANG Xiao-yan(Huainan United University,Anhui Huainan 232038,China)
机构地区 淮南联合大学
出处 《长春工程学院学报(自然科学版)》 2019年第2期67-71,共5页 Journal of Changchun Institute of Technology:Natural Sciences Edition
基金 安徽省教研课题(2016tszy075) 安徽省人文社科项目(SK2017A0653)
关键词 协作过滤 网络营销 个性化推荐 产品分类 WEB使用挖掘 collaborative filtering network marketing personalized recommendation product classification Web usage mining
  • 相关文献

参考文献9

二级参考文献81

  • 1刘丽文.先进制造技术与系统管理技术[J].清华大学学报(哲学社会科学版),1996,11(2):70-74. 被引量:3
  • 2邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 3李凤慧.基于用户浏览行为挖掘的电子商务个性化推荐系统[J].潍坊学院学报,2004,4(2):66-67. 被引量:8
  • 4袁巍,李津生,洪佩琳.一种P2P网络分布式信任模型及仿真[J].系统仿真学报,2006,18(4):938-942. 被引量:45
  • 5Bakos J Y.Reducing buyer search costs:Implications for electronic marketplaces[J].Management Science,1997,43 (12):1676-1692.
  • 6Lal R,Sarvary M.When and how is the Internet likely to decrease price competition?[J].Marketing Science,1999,18(4):485-503.
  • 7Brynjolfsson E,Smith M D.Frictionless commerce? A comparison of Internet and conventional retailers[J].Management Science,2000,46(4):563-585.
  • 8Chen P Y,Hitt L M.A model of price dispersion in internet-enabled markets[R].Working paper,Graduate School of Industrial Administration,Carnegie Mellon University,2004.
  • 9Smith M D,Bailey J,Brynjolfsson E.Understanding digital markets:Review and assessment.Working paper,MIT Sloan School,Available at http://ecommerce.mit.edu/papers/ude,1999.
  • 10Friberg R,Ganslandt M,Sandstrom M.E-commerce and prices-theory and evidence.Working paper series in economics and Finance No 389,Stockholm School of Economics,Sweden,2000.

共引文献1236

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部