期刊文献+

Optimizing the low-pressure carburizing process of 16Cr3NiWMoVNbE gear steel 被引量:9

Optimizing the low-pressure carburizing process of 16Cr3NiWMoVNbE gear steel
原文传递
导出
摘要 Compared with the traditional atm ospheric carburization, low-pressure carburization has the benefits of producing no surface oxidation and leaving fine, uniformly dispersed carbides in the carburized layer. However, the process param eters for low-pressure carburization of 16Cr3NiWMoVNbE steel have yet to be optimized. Thus, we use the saturation-value method to optimize these parameters for aviation-gear materials. Toward this end, the m icrostructure and properties of 16Cr3NiWMoVNbE steel after different carburization processes are studied by optical microscopy, scanning electron microscopy, transm ission electron microscopy, and electron probe microanalysis. Considering the saturated austenite carbon concentration, we propose a model of carbon flux and an alloy coefficient for low -pressure carburization to reduce the carbon concentration in austenite and avoid the surface carbide network. At the early stage of carburization (30 s), the gas-solid interface has a higher concentration gradient. The averaging method is not ideal in practical applications, but the carbon flux measured by using the segm ented average m ethod is 2.5 times that measured by the overall average method, which is ideal in practical applications. The corresponding carburization tim e is reduced by 60%. By using the integral average method, the actual carburization time increases, which leads to the rapid form ation of carbide on the surface and affects the entire carburization process. Nb and Wcombine with C to form carbides, which hinders carbon diffusion and consumes carbon, resulting in a sharp decrease in the rate of C diffusion in austenite (the diffusion rate is reduced by 52% for 16Cr3NiWMoVNbE steel). By changing the diffusion coefficient model and comparing the hardness gradient of different processes, the depth of the actual layer is found to be very similar to the design depth. Compared with the traditional atmospheric carburization,low-pressure carburization has the benefits of producing no surface oxidation and leaving fine,uniformly dispersed carbides in the carburized layer.However,the process parameters for low-pressure carburization of 16Cr3NiWMoVNbE steel have yet to be optimized.Thus,we use the saturation-value method to optimize these parameters for aviation-gear materials.Toward this end,the microstructure and properties of 16Cr3NiWMoVNbE steel after different carburization processes are studied by optical microscopy,scanning electron microscopy,transmission electron microscopy,and electron probe microanalysis.Considering the saturated austenite carbon concentration,we propose a model of carbon flux and an alloy coefficient for low-pressure carburization to reduce the carbon concentration in austenite and avoid the surface carbide network.At the early stage of carburization(■0 s),the gas-solid interface has a higher concentration gradient.The averaging method is not ideal in practical applications,but the carbon flux measured by using the segmented average method is 2.5 times that measured by the overall average method,which is ideal in practical applications.The corresponding carburization time is reduced by 60%.By using the integral average method,the actual carburization time increases,which leads to the rapid formation of carbide on the surface and affects the entire carburization process.Nb and W combine with C to form carbides,which hinders carbon diffusion and consumes carbon,resulting in a sharp decrease in the rate of C diffusion in austenite(the diffusion rate is reduced by ■2% for 16Cr3NiWMoVNbE steel).By changing the diffusion coefficient model and comparing the hardness gradient of different processes,the depth of the actual layer is found to be very similar to the design depth.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第7期1218-1227,共10页 材料科学技术(英文版)
基金 financially supported by the National Key R&D Program of China (Grant No. 2016YFB0300600) the National Natural Science Foundation of China (Grant No. 51604074)
关键词 16Cr3NiWMoVNbE STEEL LOW-PRESSURE CARBURIZING Saturated CARBON CONCENTRATION CARBON FLUX 16Cr3NiWMoVNbE steel Low-pressure carburizing Saturated carbon concentration Carbon flux
  • 相关文献

同被引文献112

引证文献9

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部