期刊文献+

(ω1)性质与单值扩张性质

Property (ω1) and the single-valued extension property
原文传递
导出
摘要 称有界线性算子 T满足(ω1)性质,如果T的上半Weyl谱在它的逼近点谱中的补集包含在它的谱集中孤立的有限重的特征值的全体中。根据单值扩张性质定义了一种新的谱集,利用该谱集给出了Hilbert空间中有界线性算子满足(ω1)性质的充分必要条件。作为应用,给出了亚(或超)循环算子类满足(ω1)性质的等价刻画。 A bounded linear operator T satisfies property(ω1), if the complement in the approximate point spectrum σa(T)of the upper semi-Weyl spectrum σea(T)is contained in the set of all isolated points of the spectrum σ(T)which are finite eigenvalues. In this paper, by means of the new spectrum defined in view of the single-valued extension property, the sufficient and necessary conditions for a bounded linear operator defined on a Hilbert space satisfying the property(ω1)are established. As an application, the property(ω1)for hypercyclic(or supercyclic)operators are characterised.
作者 戴磊 黄小静 郭奇 DAI Lei;HUANG Xiao-jing;GUO Qi(School of Mathematics and Physics,Weinan Normal University,Weinan 714099,Shaanxi,China;School of Mathematics and Information Science,Shaanxi Normal University,Xi'an 710119,Shaanxi,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2019年第8期55-61,75,共8页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11501419) 渭南师范学院特色学科建设项目(18TSXK03)
关键词 (ω1)性质 单值扩张性质 亚循环算子 超循环算子 property(ω1) single-valued extension property hypercyclic operator supercyclic operator spectrum
  • 相关文献

参考文献1

二级参考文献17

  • 1Weyl H. Uber beschrankte quadratische Formen, deren Differenz vollstetig ist [J]. Rendiconti del Circolo Matematico di Palermo, 1909, 27:373-392.
  • 2Harte R, Lee W Y. Another note on Weyl's theorem [J]. Transactions of the American Mathematical Society, 1997, 349:2115-2124.
  • 3Rakoczevic: V. Operators obeying a-Weyl's theorem[J]. Revue Roumaine de Mathématiques Pures et Appliqueées, 1989, 34(10):915-919.
  • 4Aiena P, Pena P. Variation on Weyl's theorem[J]. Journal of Mathematical Analysis and Applications,2006, 324:566-579.
  • 5Aiena P. Fredholm theory and local spectral theory, with applications to multiplier[M]. Netherlands: Kluwer Academic Publisher, 2004 : 110-112.
  • 6Grabiner S. Uniform ascent and descent of bounded operators[J]. Journal of the Mathematical Society of Japan, 1982, 34(2):317-337.
  • 7Berkani M, Sarih M. On semi B-Fredholm operators [J]. Glasgow Mathematical Journal, 2001, 43 (3): 457-465.
  • 8Berkani M. Index of B-Fredholm operators and Generalization of a Weyl theorem[J]. Proceedings of the American Mathematical Society, 2002, 130 ( 6 ): 1717-1723.
  • 9Oudghiri M. Weyl's and Browder's theorem for operators satisfying the SVEP [J]. Studia Mathematica, 2004, 163(1) :85-101.
  • 10Rakocevic V, Semi-Fredholm operator with finite ascent or descent and perturbations[J]. Proceedings of the American Mathematical Society, 1995, 23: 3823-3825.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部