期刊文献+

Hilbert空间中连续广义框架的分解

On decompositions of continuous generalized frames in Hilbert spaces
原文传递
导出
摘要 利用连续广义预框架算子,刻画了连续广义框架、Parseval连续广义框架、连续广义Riesz基及连续广义标准正交基;通过已建立的刻画结果及有界算子的分解,得到了连续广义框架可以表示特殊的或者更简单的连续广义框架的线性组合,比如连续广义标准正交基、连续广义Riesz-基、Parseval连续广义框架。 This paper establishes the characterization of continuous generalized frames, Parseval continuous g-frames, continuous gen eralized Riesz bases and continuous generalized orthonormal bases in term of the continuous generalized preframe operator. Using the established characterization results and decompositions of bounded operators, the representation of continuous generalized frames in term of linear combinations of simpler ones such as continuous generalized orthonormal bases, continuous generalized Riesz bases and Parseval continuous generalized frames is studied.
作者 张伟 付艳玲 ZHANG Wei;FU Yan-ling(School of Mathematics and Information Sciences, Henan University of Economics and Law, Zhengzhou 450046, Henan, China;Department of Information Engineering, Henan Finance University, Zhengzhou 451464, Henan, China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2019年第8期76-80,89,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11761079) 河南省自然科学基金资助项目(152300410207)
关键词 广义框架 连续广义框架 连续广义标准正交基 算子 generalized frame continuous generalized frame continuous generalized orthonormal base operator
  • 相关文献

参考文献1

二级参考文献30

  • 1Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Math. Soc., 1952, 72: 341-366.
  • 2Daubechies I., Grossmann A., Meyer Y., Painless nonorthogonal expansions, J. Math. Phys., 1986, 27: 1271-1283.
  • 3Ferreira P. J. S. G., Mathematics for multimedia signal processing II: Discrete finite frames and signal reconstruction, in: J.S. Byrnes (Ed.), Signal processing for Multimedia, IOS Press, 1999, 35-54.
  • 4Benedetto J. J., Heller W., Irregular sampling and theory of frames, I, Note Mat. X., 1990, 103-125, Suppl. n.1.
  • 5Dudey Ward N. E., Partington J. R., A construction of rational wavelets and frames in Hardy-Sobolev space with applications to system modelling, SIAM J. Control Optim., 1998, 36: 654-679.
  • 6Eldar Y., Forney Jr G. D., Optimal tight frames and quantum measurement, IEEE Trans. Inform. Theory, 2002, 48: 599-610.
  • 7Chan R. H., Riemenschneider S. D., Shen L., et al., Tight frame: An efficient way for high-resolution image reconstruction, Appl. Comput. Harmon. Anal., 2004, 17: 91-115.
  • 8Holmes R. B., Paulsen V. I., Optimal frames for erasures, Linear Algebra Appl., 2004, 377: 31-51.
  • 9Strohmer T., Heath Jr R., Grassmanian frames with applications to coding and communications, Appl. Comput. Harmon. Anal., 2003, 14: 257-275.
  • 10Casazza P. C., The art of frame theory, Taiwan Residents J. Math., 2000, 4(2): 129-201.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部