摘要
考虑非线性延迟微分方程的边值方法,在Lipschitz条件下,分析了边值方法的收敛性、全局收缩性和弱全局收缩性。最后,通过数值算例验证了主要结论。
The boundary value methods are applied to the nonlinear delay differential equations. Under the assumptions of Lipschitz conditions, the convergence and the global contractivity, the weakly global contractivity of the boundary value methods are analyzed. Finally, some numerical experiments are carried out to illustrate the theoretical results.
作者
张如
韩旭
刘小刚
ZHANG Ru;HAN Xu;LIU Xiao-gang(School of Information Engineering, Northwestern Polytechnical University Mingde College, Xi'an 710124, Shaanxi, China;Department of Mathematics, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China;Department of Mathematics, Modern College of Northwest University, Xi'an 710130, Shaanxi, China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2019年第8期97-101,120,共6页
Journal of Shandong University(Natural Science)
基金
陕西省教育厅专项科学研究计划项目(18JK1166)
关键词
边值方法
非线性延迟微分方程
收敛性
收缩性
boundary value method
nonlinear delay differential equation
convergence
contractivity