期刊文献+

一类具有随机效应的SIRI传染病模型的定性分析 被引量:5

Qualitative analysis of an SIRI epidemic model with stochastic effects
原文传递
导出
摘要 研究了具有随机效应的SIRI双线性传染病模型。利用停时理论及Lyapunov分析方法,证明了随机模型正解的全局存在唯一性和有界性,讨论了随机模型的解在相应确定性模型的无病平衡点和地方病平衡点附近的振荡行为,得到了随机模型的解的平均持续和疾病灭绝的充分条件。最后,数值模拟验证了理论结果的正确性。 An SIRI bilinear epidemic model with stochastic effects is studied. The global existence, uniqueness and boundedness of its positive solution are proved by using stopping time theory and Lyapunov analysis method. It is also shown that the solution of the stochastic model oscillates around the corresponding deterministic disease-free equilibrium and endemic equilibrium points, and the sufficient conditions for persistence in mean of the solution of the stochastic model and disease extinction are obtained. Finally, numerical simulations are carried out to prove the validity of theoretical results.
作者 高建忠 张太雷 GAO Jian-zhong;ZHANG Tai-lei(School of Science, Chang'an University, Xi'an 710064, Shaanxi, China)
机构地区 长安大学理学院
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2019年第7期89-99,105,共12页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11701041) 陕西省自然科学基础研究计划项目(2018JM1011 2017JQ1014)
关键词 随机SIRI模型 振荡行为 平均持续 疾病灭绝 stochastic SIRI model oscillating behavior persistence in mean disease extinction
  • 相关文献

参考文献3

二级参考文献43

  • 1Gray A, Greenhalgh D, Hu L, et al. A stochastic differential equation SIS epidemic model[J]. SIAM Journal on Applied Mathematics, 2011,71 (3) .. 876-902.
  • 2Tornatore E, Buccellato S, Vetro P. Stability of a stochastic SIR system[J]. Physica A.. Statistical Mechanics and its Applications, 2005 ( 354) .. 111-126.
  • 3Zhao Y,Jiang D. Dynamics of stochastically perturbed SIS epidemic model with vaccination[J]. Abstract and Applied Analysis, 2013,2013 : 1-12.
  • 4Zhao Y,Jiang D. The threshold of a stochastic SIS epidemic model with vaccination[J]. Applied Mathematics and Com- putation, 2014,243 .. 718-727.
  • 5Lin Y,Jiang D, Xia P. Long-time behavior of a stochastic SIR model[J]. Applied Mathematics and Computation, 2014,236 .. 1-9.
  • 6Wang F, Wang X, Zhang S, et al. On pulse vaccine strategy in a periodic stochastic SIR epidemic model[J]. Chaos, Soil- tons Fractals,2014,66: 127-135.
  • 7Lahrouz A,Omari L. Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear inci- dence[J]. Statistics Probability Letters, 2013,83 (4) ;960-968.
  • 8Ji C, Jiang D. Threshold behaviour of a stochastic SIR model[J]. Applied Mathematical Modelling,2014(38): 5067- 5079.
  • 9Zhao Y,Jiang D, O'Regan D. The extinction and persistence of the stochastic SIS epidemic model with vaccination[J]. Physica A:Statistical Mechanics and its Applications, 2013, 392(20) :4916-4927.
  • 10Tudor D. A deterministic model for herpes infections in human and animal populations[J]. SIAM Review, 1990,32 (1) ..136-139.

共引文献6

同被引文献29

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部