期刊文献+

检索词优化与空间自适应的深网POI获取方法研究

Research on Deep Web POI acquisition based on retrieving word optimization and spatial adaptive
原文传递
导出
摘要 针对检索词库构建困难、数据请求量受限制等相关问题,该文提出一种基于独立覆盖率排序和空间自适应剖分的深网POI信息搜索方法,通过候选检索词初步构建、贪婪式探测搜索、检索词优化降维、空间自适应剖分爬行等主要流程,利用逐步逼近POI搜索的最大覆盖最优解,实现对深网POI信息的全量获取,大幅度提高深网POI数据的召回率与采集效率,该方法对于丰富地理信息资源、提升空间信息服务与内容管理能力具有重要意义。 In this paper,a deep-web POI information search method based on independent coverage ranking and spatial adaptive partition is proposed to solve the problems of difficult construction of retrieval word base and limited data request.By constructing candidate search terms,searching greedily,optimizing dimensionality reduction of search terms,and crawling spatially adaptive partitioning,the maximum coverage optimal solution of POI search is approached step by step,and the full POI information of deep web is obtained.It is of great significance to improve the recall rate and collection efficiency of POI data for enriching geographic information resources and improving the ability of spatial information service and content management.
作者 周国新 吴永静 崔腾腾 杨辉山 罗安 ZHOU Guoxin;WU Yongjing;CUI Tengteng;YANG Huishan;LUO An(Land &Resources Technology Center of Guangdong Province,Guangzhou 510075,China;Chinese Academy of Surveying and Mapping,Beijing 100036 ,China)
出处 《测绘科学》 CSCD 北大核心 2019年第7期135-140,共6页 Science of Surveying and Mapping
关键词 深网POI 数据获取 检索词优化 空间自适应剖分 deep Web POI data collection retrieving word optimization spatial adaptive subdivision
  • 相关文献

参考文献6

二级参考文献101

  • 1胡东东,孟小峰.一种基于树结构的Web数据自动抽取方法[J].计算机研究与发展,2004,41(10):1607-1613. 被引量:21
  • 2Bergman M K. The Deep Web: Surfacing hidden value [J]. Journal of Electronic Publishing, 2001, 7(1): 1174-1175.
  • 3Chang K C C, He B, Li C, et al. Structured databases on the Web: Observations and implications [J]. SIGMOD Record, 2004, 33(3): 61-70.
  • 4Liu W, Meng X F, Meng W Y. Deep Web data integration, WAMDM-TR-2006-3 [OL]. [ 2010-01-10]. http://idke. rue. edu. cn/reports/report2006/seminar% 20summary[Deep] 20Web. pdf.
  • 5Barbosa L, Freire J. An adaptive crawler for locating hidden Web entry points [C] //Proc of the 16th Int Conf on World WideWeb(WWW). NewYork: ACM, 2007: 441-450.
  • 6Barbosa L, Freire J. Searching for hidden-Web databases [C] //Proc of the 8th ACM SIGMOD Int Workshop on Web and Databases (WebDB). New York: ACM, 2005: 1-6.
  • 7He Hal, Meng Weiyi, Clement T Y, et al. WISE- Integrator: A system for extracting and integrating complex Web search interfaces of the Deep Web [C]//Proc of the 31st Int Conf on Very Large Data Bases(VLDB). New York: ACM, 2005: 1314-1317.
  • 8Wu Wensheng, AnHai Doan, Clement T Y. WebIQ: learning from the Web to match Deep-Web query interfaces [C] //Proc of the 22nd Int Conf on Data Engineerlng(ICDE), Washington D C: IEEE Computer Society Press, 2006: 44- 54.
  • 9Madhavan J, Ko D, Kot L, et al. Google's Deep Web crawl [J]. PVLDB, 2008, 1(2): 1241-1252.
  • 10Cui Tao, David W Embley. Automatichidden-Web table interpretation by sibling page comparison [C] //Proc of the 26th Int Conf on Conceptual Modeling (ER). Berlin: Springer, 2007:560-581.

共引文献260

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部