期刊文献+

基于动态主题—情感演化模型的网络舆情信息分析 被引量:40

Analysis of Online Public Opinion Information Based on the Dynamic Theme-emotion Evolution Model
原文传递
导出
摘要 【目的/意义】目前,静态情感倾向判断成为分析舆情信息的一种重要手段,但这种方法局限于最终的情感分类结果,不能追溯到整个情感演变过程以及各阶段的影响因素,因此无法提出更为细致和有针对性的措施。【方法/过程】鉴于此,本文提出一种基于动态主题-情感演化模型的舆情信息分析方法,通过对评论文本进行语义角色标注,建立情感单元词表;然后将改进的TF-IDF和K-Means聚类方法相结合提取主题词,形成主题-情感匹配词表,比起传统的TF-IDF方法,其准确率和F值都有明显提升;最后引入时间节点,利用点互信息(Pointwise Mutual Information,PMI)和情感词典的方法,进行动态情感演化分析。【结果/结论】实验研究证明,该方法得出的情感演化趋势与实际情况相吻合,为进一步制定治理网络舆情危机的措施,提供了有效依据。 【Purpose/significance】At present,the judgment of static emotional tendency has become an important method for the analysis of public opinion information,but this method is limited to the final emotion classification results,and cannot be traced back to the whole process of emotion evolution and the influencing factors of each stage,so it can't put forward more detailed and targeted measures.【Method/process】This paper proposes a public opinion information analysis method based on the dynamic theme-emotion evolution model.Through semantic role labeling on the comment text,the emotion unit word list is established.Then the improved TF-IDF and K-Means clustering method are combined to extract the subject words and form the theme-emotion matching word list.Compared with the traditional TF-IDF method,the accuracy and F value are significantly improved.Finally,time nodes are introduced to analyze the dynamic emotional evolution using the method of Pointwise Mutual Information(PMI)and the dictionary of emotion.【Result/conclusion】Experimental research proves that the trend of emotion evolution obtained by this method is consistent with the actual situation,which provides effective basis for further developing measures to govern online public opinion crisis.
作者 朱晓霞 宋嘉欣 孟建芳 ZHU Xiao-xia;SONG Jia-xin;MENG Jian-fang(School of Economics and Management,Yanshan University,Qinhuangdao 066004,China)
出处 《情报科学》 CSSCI 北大核心 2019年第7期72-78,共7页 Information Science
基金 国家自然科学基金项目“公共危机中伪信息的扩散机理与控制研究”(71301140) 河北省自然科学基金项目“公共危机伪信息扩散的网络拓扑与情景应对模型研究”(G2015203425) 河北省教育厅科学研究计划项目河北省高等学校青年拔尖人才计划“网络协同下的智能制造资源共享体系架构与优化设计”(BJ2017082)
关键词 语义角色标注 TF-IDF K-MEANS聚类 点互信息 动态情感演化分析 semantic role labeling TF- IDF k- means clustering point mutual information dynamic emotional evolutionanalysis
  • 相关文献

参考文献8

二级参考文献86

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:122
  • 3Hatzivassiloglou V, McKeown K R. Predicting the Semantic Orientation of Adjectives [A]//Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C]. 1997:174-181.
  • 4Peter T, Michael L. Measuring Praise and Criticism: Inference of Semantic Orientation from Association [J]. ACM Transactions on Information Systems, 2003,21 (4) : 315-346.
  • 5Peter D T. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[C]//Proceeding of the Association for Computational Linguistics 40th Anniversary Meeting. New Brunswick, N. J. , 2002.
  • 6Pang Bo, Lee Lillian, Vaithyanathan S. Thumbs up? Sentiment classification using machine learning techniques [C] //Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing. 2002:79-86.
  • 7仇德辉.数理情感学[M].长沙:湖南人民出版社.2001.
  • 8Kumar R,Novak J.On the Bursty Evolution of Blogspace[C]//The Twelfth International World Wide Web Conference.Budapest:ACM,2003:568-576.
  • 9Gruhl D,Guha R,Kumar R,et al.The Predictive Power of Online Chatter[C]//The Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Chicago:ACM,2005:78-87.
  • 10Mei Q,Zhai C.Discovering Evolutionary Theme Patterns from Text-An Exploration of Temporal Text Mining[C] //Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Philadelphia:ACM,2005:198-207.

共引文献163

同被引文献536

引证文献40

二级引证文献237

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部