期刊文献+

基于FMCW雷达的双流融合神经网络手势识别方法 被引量:22

Two-Stream Fusion Neural Network Approach for Hand Gesture Recognition Based on FMCW Radar
下载PDF
导出
摘要 针对传统光学摄像头和无线技术的手势识别方法受光照环境影响和空间纵向、横向特征不全的问题,该文提出一种基于调频连续波(Frequency Modulated Continuous Wave,FMCW)雷达信号的双流融合神经网络(Two-Stream Fusion Neural Network,TS-FNN)手势识别方法.首先,利用二维快速傅立叶变换(Fast Fourier Transform,FFT)求取中频信号的频谱,估计手势的距离和速度,并利用多重信号分类(Multiple Signal Classification,MUSIC)方法计算角度.其次,利用这三维参数在时间上的累积,将一个手势动作映射为32帧距离-速度矩阵图和角度时间图.最后,建立TS-FNN进行手势特征提取和特征融合.实验结果表明,TS-FNN方法与传统卷积神经网络相比,手势的平均识别准确率提升了约5%. To deal with the problem of easily being affected by illumination environment of the traditional optical camera based hand gesture recognition method and the incomplete spatial and lateral characteristics of the wireless based hand gesture recognition method,this paper proposes a frequency modulated continuous wave (FMCW) radar signal based two-stream fusion neural network (TS-FNN) for hand gesture recognition.Firstly,the spectrum of the IF signal is obtained by two-dimensional Fast Fourier Transform (2D-FFT),the range and speed of the gesture are estimated,and the angle is calculated by the Multiple Signal Classification (MUSIC) method.Secondly,using the accumulation of three-dimensional parameters in time,a gesture action is mapped to a 32-frame range-speed matrix diagram and an angular-time map.Finally,TS-FNN is established for gesture feature extraction and classification.The experimental results show that compared with the existing methods,the TS-FNN method improves the average recognition accuracy by about 5%.
作者 王勇 王沙沙 田增山 周牧 吴金君 WANG Yong;WANG Sha-sha;TIAN Zeng-shan;ZHOU Mu;WU Jin-jun(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2019年第7期1408-1415,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61771083,No.61704015) 长江学者和创新团队发展计划(No.IRT1299) 重庆市科委重点实验室专项经费 重庆市基础科学与前沿技术研究项目(No.cstc2017jcyjAX0380,No.cstc2015jcyjBX0065) 重庆市高校优秀成果转化资助项目(No.KJZH17117)
关键词 人机交互 手势识别 FMCW雷达 深度学习 human-machine interaction gesture recognition FMCW radar deep learning
  • 相关文献

参考文献3

二级参考文献21

  • 1司伟建.MUSIC算法多值模糊问题研究[J].系统工程与电子技术,2004,26(7):960-962. 被引量:21
  • 2何力,傅忠谦,顾理.一种基于最大似然Hausdorff距离的手势识别算法[J].电子技术(上海),2010(5):5-7. 被引量:2
  • 3Kaveh P,Prashant K.无线网络通信原理与应用[M].刘剑,安晓波,李春生,等,译.北京:清华大学出版社,2002.411-422.
  • 4Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Trans, 1986, AP-34(3):276 - 280.
  • 5Porat B, Friedlander B. Analysis of the asymptotic relative effidency of the MUSIC algorithm[J]. IEEE Trans, 1988, ASSP- 36(4) :532- 544.
  • 6Wang H, Kaveh M. On the performance of signal-subspace processing-Part Ⅰ:Narrow-band system[J]. IEEE Trans, 1986, ASSP-34(10) : 1201 - 1209.
  • 7Guo Y, Wang H, Luo B. Analysis of DOA estimation spatial resolution using MUSIC algorithm[A]. Proceedings of SPIE: vol5985 part one [C]. Washington: SPIE, 2005. 59852S1-59852S4.
  • 8Zoltowski M D, Mathews C P. Real-time frequency and 2-D angle estimation with sub-Nyquist spatioternporal sampling[J]. Trans, 1994, SP-42(10):2781 - 2794.
  • 9J E Hudson. Adaptive Array Principles[M]. Stevenage, U K: Peregrinus, 1981.52- 58.
  • 10王西颖,戴国忠,张习文,张凤军.基于HMM-FNN模型的复杂动态手势识别[J].软件学报,2008,19(9):2302-2312. 被引量:40

共引文献43

同被引文献112

引证文献22

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部