期刊文献+

基于深度学习的癫痫脑电信号分析与预测 被引量:5

Analysis and Prediction of Epilepsy EEG Signals Based on Deep Learning
下载PDF
导出
摘要 癫痫(Epilepsy)是关于大脑功能障碍的慢性神经系统疾病之一,目前研究表明其病理原因是大脑的神经元发生了异常突发放电,准确诊断该疾病需要长时间的脑电监测,而人工识别工作量巨大且具有主观性。深度学习是一种构造多层神经网络的机器学习方法,具有发现数据中隐藏的分布式特征表示的能力。针对癫痫患者的脑电信号,本文介绍癫痫脑电信号的特征提取、脑电信号的分析及脑电信号的分类方法。为采用深度学习对癫痫进行预测提供理论依据。 Epilepsy is one of the chronic nervous system diseases related to brain dysfunction. The current research shows that the pathological cause is abnormal discharge of neurons in the brain. The accurate diagnosis of the disease requires long-term EEG monitoring, but manual identification is a huge workload and has subjective intention. Deep learning is a machine learning method for constructing multi-layer neural networks, having the ability to discover hidden feature representations in data. In view of the EEG signals of patients with epilepsy, this paper introduces the feature extraction of EEG signals, the analysis of EEG signals and the classification of EEG signals, hoping to provide a theoretical basis for predicting epilepsy by deep learning.
作者 王晓丽 WANG Xiaoli(College of Electronic Information Engineering,Changchun University,Changchun 130022,China)
出处 《长春大学学报》 2019年第6期15-18,33,共5页 Journal of Changchun University
关键词 深度学习 癫痫 脑电信号 deep learning epilepsy EEG signals
  • 相关文献

参考文献2

二级参考文献21

  • 1Nicolelis MA. Actions from thoughts [ J ]. Nature ,2001,409 (6818) : 403-407.
  • 2Ryvlin P, Cucherat M, Rheims S. Risk of sudden unexpected death in epilepsy in patients given adjunctive antiepileptic treatment for refractory seizures:a meta-analysis of placebo-controlled random- ised trials[J]. Lancet Neurol,2011,10( 11 ) :961-968.
  • 3Mitzdorf U. Properties of the evoked potential generators: current source-density analysis of visually evoked potentials in the cat cor- tex [ J ]. Int J Neurosci, 1987,33 ( 1/2 ) :33-59.
  • 4Vaughan TM ,Wolpaw JR. The third international meeting on Brain- Computer interface technology:making a difference [ J ]. IEEE Trans Neural Syst Rehabil Eng,2006,14 ( 2 ) : 126-127.
  • 5Vauglaan TM, Heetderks WJ, Trejo LJ, et al. Brain-computer inter- face technology:a review of the Second International Meeting [ J ]. IEEE Trans Neural Syst Rehabil Eng,2003,11 (2) :94-109.
  • 6Geva AB,Kerem DH. Forecasting generalized epileptic seizures from the EEG signal by wavelet analysis and dynamic unsupervised fuzzy clustering[ J ]. IEEE Trans Biomed Eng, 1998,45 (10) : 1205-1216.
  • 7Stein AG, Eder HG, Blum DE, et al. An automated drug delivery system for focal epilepsy[J]. Epilepsy Res,2000,39(2) :103-114.
  • 8Schad A, Schindler K, Schelter B, et al. Application of a multivari- ate seizure detection and prediction method to non-invasive and in- tracranial long-term EEG recordings[ J]. Clin Neurophysiol, 2008, 119(1) :197-211.
  • 9Viglione SS, Walsh GO. Proceedings: epileptic seizure prediction [ J ]. Electroencephal Clin Neurophysiol, 1975,39 (4) :435-436.
  • 10Elif DU. Statistics over features : EEG signals analysis [ J ]. Comput Biol Med,2009,39(8) :733-741.

共引文献4

同被引文献38

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部