期刊文献+

电解葡萄糖制氢能耗分析

Energy consumption analysis for hydrogen production by electrolysis of glucose
下载PDF
导出
摘要 新型高效生物质电解制氢技术通过使用杂多酸作为催化剂和电荷载体,能够将几乎所有的生物质原料直接电解得到氢气,效率高、能耗低,具有极大的应用价值。本文搭建了以葡萄糖为原料的生物质电解制氢实验系统,并构建了制氢能耗的物理模型,从制氢速率和能量转化率两方面研究了电解葡萄糖的制氢性能。实验结果表明:采用该技术的制氢速率可达58.88 mL/min,计算得到制氢电耗为2.132 (kW·h)/m^3,能量转化率可达10.465%,其中在预处理阶段能耗最大,约占总能耗的73.187%;通过分析各部分能耗的特点,提出改变泵运行策略,利用太阳能等可再生能源进行预处理,可极大地提高能量转化率。 By using heteropoly acid as catalyst and charge carrier, the new high-efficiency biomass electrolysis technology for hydrogen production can electrolyze almost all biomass raw materials to obtain hydrogen, which has the advantages of high efficiency and low energy consumption. Therefore, it has great application value. The experimental system of hydrogen production by electrolysis of biomass using glucose as raw material was established, and a physical model for energy consumption of hydrogen production by electrolysis was established. The hydrogen production performance by electrolysis of glucose was studied from two aspects of hydrogen production rate and energy conversion rate. The results show that, the hydrogen production rate of this technology can reach 58.88 m L/min and the electricity consumption of hydrogen production is calculated to be 2.132(k W·h)/m^3. The energy conversion efficiency can reach 10.465%. In the process of pretreatment, the energy consumption is about 73.187% of the total energy consumption. By analyzing the characteristics of energy consumption of each part, it is proposed to change the pump operation strategy and use solar energy and other renewable energy for pretreatment, which can improve the energy conversion efficiency greatly.
作者 王桂洲 王修彦 王梦娇 张秩鸣 徐冬 孙振新 WANG Guizhou;WANG Xiuyan;WANG Mengjiao;ZHANG Zhiming;XU Dong;SUN Zhenxin(School of Energy Power and Mechanical Engineering,North China Electric Power University Beijing 102206,China;Guodian New Energy Technology Research Institute Co.,Ltd.,Beijing 102209,China;Beijing Key Laboratory of Power Generation System Functional Material,Beijing 102209,China)
出处 《热力发电》 CAS 北大核心 2019年第7期149-154,共6页 Thermal Power Generation
基金 国家能源集团科技创新项目(2017B1BE00100) 北京市科技重大专项(Z171100002017021)~~
关键词 生物质 葡萄糖 电解制氢 制氢速率 能耗 能量转化率 biomass glucose electrolytic hydrogen production hydrogen production rate energy consumption energy conversion efficiency
  • 相关文献

参考文献4

二级参考文献74

  • 1刘衍平,高新霞.大功率电子器件散热系统的数值模拟[J].电子器件,2007,30(2):608-611. 被引量:24
  • 2魏子栋,洪燕,李兰兰,季孟波,杨明莉,孙才新.HTMAB对碳电极上电解水的促进作用[J].化工学报,2004,55(S1):265-268. 被引量:4
  • 3陈庆华,刘晓瑭,张平,王来军,陈崧哲.碘硫循环中硫酸在铁酸铜上的催化分解[J].工业催化,2009,17(8):39-44. 被引量:2
  • 4官丽莉,周小勇,罗艳.我国植物热值研究综述[J].生态学杂志,2005,24(4):452-457. 被引量:101
  • 5孙志强,周孑民,张宏建.弯管流量计测量特性的数值模拟与试验研究[J].传感技术学报,2007,20(6):1412-1415. 被引量:6
  • 6MAROTO-VALER M M, SONG C, SOONG Y. Environ- mental Challenges and Greenhouse Gas Control for Fossil Fuel Utilization in the 21st Century [ M]. New York: Kluwer Academic/Plenum Publishers ,2002.
  • 7ISHIHARA T, JIRATHIWATHANAKUL N, ZHONG H. Intermediate temperature solid oxide electrolysis cell u- sing LaGaO3 based perovskite electrolyte [ J ]. Energy & Environmental Science ,2010,3:665 - 672.
  • 8宁波材料技术与工程研究所.宁波材料所SOEC高温电解水制氢取得重要进展[J].2011,http://www.nimte, ac. cn/xwzx/tpxw/201104/t20110411_3110470, html.
  • 9KOLB G J,DIVER R B. Screening analysis of solar ther- mochemical hydrogen concepts, Sandia Report SAND200$-1900, Sandia [ R . National Laboratories, New Mexico : Albuquerque ,2008.
  • 10YU J,QI L,JARONIEC M. Hydrogen production by pho- tocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets[ J]. Journal of Physical Chemistry C,2010,114(30):13 118-13 125.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部