期刊文献+

表面等离激元纳米聚焦研究进展 被引量:6

Research progress of plasmonic nanofocusing
下载PDF
导出
摘要 表面等离激元是束缚于金属纳米结构表面的电磁模式,具有突破光学衍射极限和局域场增强等特点.当表面等离激元沿一维锥形纳米结构表面传播时,由于纳米聚焦效应,使得等离激元能量汇聚于锥形结构的纳米尖端,从而在该位置产生巨大的局域场增强.这一现象为电磁场能量在纳米尺度的定向输送提供了十分有效的路径,在分子光谱增强及传感领域得到广泛的应用.本文对近年来表面等离激元纳米聚焦在纳米光子学领域的研究进展进行了综述,并展望了这一领域未来的发展方向. Surface plasmons(SPs) are the surface waves of collective oscillations of free electrons at metal-dielectric interface, which have the ability to overcome the diffraction limit and to enhance the giant near-field. Tapered metallic nanostructures that support surface plasmons’ propagation are highly attractive to nanophotonic applications because of their waveguiding and field-focusing properties. This distinct morphologic feature enables the functionality known as nanofocusing. As a result, the plasmons can be guided in these nanostructures and finally focused on the sharp apex to greatly enhance the local field. This attractive effect can be widely used for effective remote-excitation detection/sensing. In this paper, we review various types of plasmonic nanofocusing structures operating in the visible and infrared region. We focus on their fundamentals,fabrications, and applications. Firstly, we discuss the mechanisms of the plasmonic nanofocusing. Then, the characteristics of various tapered metallic nanostructures of SPs are reviewed, including on-chip waveguides,metal tips and bottom-up fabricated nanowires. For applications, some prototypes of plasmonic nanofocusing for bio/chemo sensing are demonstrated. Finally, a summary and outlook of plasmonic waveguides are given.
作者 李盼 Li Pan(Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS),Department of Physics,Capital Normal University,Beijing 100048,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2019年第14期53-68,共16页 Acta Physica Sinica
关键词 表面等离激元 锥形纳米结构 纳米聚焦 局域场增强 surface plasmons tapered nanostructures nanofocusing localized field enhancement
  • 相关文献

参考文献4

二级参考文献70

  • 1郑俊娟,孙刚.周期地嵌入电介质球壳的金属表层的表面等离子激元及其与电介质腔体模式的耦合[J].物理学报,2005,54(6):2751-2757. 被引量:6
  • 2Vo-Dinh T 1998 Trends in Anal. Chem. 17 557
  • 3Moskovits M 2005 J. Raman Spec. 36 485
  • 4Kneipp K, Kneipp H, Itazkan I, Dasari R R, Feld M S 2002 J. Phys. Condensed Matter 14 597
  • 5Rand B R, Peumans P, Forrest S R 2004 J. Appl. Phys. 96 7519
  • 6Derkacs D, Lim S H, Matheu P, Mar W, Yu E T 2006 Appl. Phys. Lett. 89 093103
  • 7Balms J T, Imre A, Vlasko-Vlasov V K, Pearson J, Hiller J M, Chen L H, Welp U 2007 Appl. Phys. Lett. 91 081104
  • 8Bohren C F 1983 Absorption and Scattering of Light by Small Particles (A Wiley Interscience Publication: New York) p351
  • 9Mock J J, Barbic M, Smith D R, Schuhz D A, Schultz S 2002 J. Chem. Phys. 116 6755
  • 10Weimer W A, Dyer M J 2001 Appl. Phys. Lett. 79 3164

共引文献63

同被引文献33

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部