期刊文献+

单分子光学探针揭示易混聚合物受限纳米区域的动力学 被引量:1

Single-molecule probes revealed dynamics of confined nano-regions in miscible polymer blends
下载PDF
导出
摘要 常规的系综研究方法显示在动力学不对称的易混聚合物中存在着受限区域,但是不能给出受限区域的分布、尺度及受限区域内的动力学分布特征等.单分子光学探针被用来探测苯乙烯高聚物与苯乙烯寡聚物形成的易混聚合物薄膜中的受限纳米区域的动力学.实验发现易混聚合物中存在转动和固定不动的两种动力学形式的单分子,指示着单分子分别耦合到苯乙烯高聚物和苯乙烯寡聚物的聚合物链片段上.转动单分子的分布揭示了易混聚合物薄膜受限区域的分布特征.受限区域的尺度被估计为其可能接近于单分子探针的尺度(约2 nm).受限纳米区域中单分子的转动关联时间的分布揭示了受限纳米区域中聚合物动力学的分布特征.实验发现在含有更高浓度的苯乙烯高聚物的混聚物薄膜中具有更快的动力学行为,从而在单分子水平上揭示了易混聚合物中的受限纳米区域的动力学. Miscible mixtures of polymer blends have physical properties that are often linked simply to the blend composition, thus offering an inexpensive and convenient method to achieve new high performance polymers.Confinement effect has been found in various polymer blend systems by the ensemble methods, but further understanding the confinement effect still requires large efforts both in experiment and in theory. Single molecule spectroscopy has the potential to provide an in-depth insight to the dynamic information by directly coupling their reorientation to the segmental relaxation of the surrounding polymer matrix. We investigate the confinement effects in polystyrene and oligostyrene blend films by using single-molecule defocused wide-field fluorescence microscopy. According to the observation for dynamic behaviors of probe molecules in the blend films of 75 wt.% and 25 wt.% polystyrene, we find that there are two types of single molecules in the blend films: rotational molecules and immobile molecules. The experimental temperature of 296 K is between the glass transition temperature(Tg) values of two pure components and also is far from the two Tg values. At the temperature, oligostyrene component is trapped by the frozen polystyrene component, but they still move locally. Therefore, the rotational and immobile molecules should couple to the oligostyrene component and polystyrene component, respectively. The distribution of rotational single molecules reveals that the confined regions randomly distribute across miscible polymer blends. The length scale of confined region is estimated to be close to that of the probe molecule by taking into account the rotational dynamics of single molecules. The local relaxation of blend film is also investigated by the rotational correlation time which can be estimated by fitting the autocorrelation curve of 〈 cos(F)〉 with a Kohlrausch-Williams-Watts stretched exponential function. The histograms of the rotational correlation times in the blend films of 75 wt.% and 25 wt.%polystyrene are obtained respectively, which reveal the characteristic of local dynamic distribution in the confined nano-regions. We find that the dynamic behavior in the blend film of 75 wt.% polystyrene is faster than that of 25 wt.% polystyrene, indicating there is a confinement effect in the blend due to the increased constraints imposed by the polystyrene component at a higher concentration of polystyrene. All results observed in the experiment can be explained qualitatively by the self-concentration model. Our work indicates that the single molecule defocused wide-field fluorescence microscopy is a powerful tool to study the complex dynamic features in the polymer blends.
作者 张国峰 李斌 陈瑞云 秦成兵 高岩 肖连团 贾锁堂 Zhang Guo-Feng;Li Bin;Chen Rui-Yun;Qin Cheng-Bing;Gao Yan;Xiao Lian-Tuan;Jia Suo-Tang(State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Laser Spectroscopy,Collaborative Innovation Centre of Extreme Optics,Shanxi University,Taiyuan 030006,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2019年第14期367-374,共8页 Acta Physica Sinica
基金 国家重点研发计划(批准号:2017YFA0304203) 国家自然科学基金(批准号:61527824,61675119,61875109,11434007,61605104) 教育部长江学者和创新团队发展计划(批准号:IRT13076) 山西省"1331工程"重点学科建设计划资助的课题~~
关键词 易混聚合物 受限纳米区域 单分子光谱 散焦成像 miscible polymer blends confined nano-regions single molecule spectroscopy defocused imaging
  • 相关文献

参考文献7

二级参考文献32

  • 1王晓波,黄涛,邵军虎,降雨强,肖连团,贾锁堂.利用光子统计概率测量单分子光子源的信号背景比[J].物理学报,2005,54(2):617-621. 被引量:5
  • 2Moemer W E, Orrit M 1999 Science 283 1670.
  • 3Weiss S 1999 Science 283 1676.
  • 4Xie X S, Trautman J K 1998 Annu. Rev. Phys. Chem. 49 441.
  • 5Dickson R M, Cubitt A B, Tsien R Y, Moerner W E 1997 Nature 388 355.
  • 6ku H P, Xie X 5 1997 ,Nature 385 143.
  • 7Veerman J A, Garcia-Parajo M F, Kuipers L, van Hulst N F 1999 Phys. Rev. Lett. 83 2155.
  • 8Lu H P, Xun L Y, Xie X S 1998 Science 282 1877.
  • 9Bopp M A, Sytnik A, Howard T D, Cogdell R J, Hochstrasser R M 1999 Proc. Natl. Acad. Sci. USA 96 11271.
  • 10Ha T J, Ting A Y, l.iang J, Deniz A A, Chemla D S, Schultz P G, Weiss S 1999 Chem. Phys. 247 107.

共引文献7

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部