期刊文献+

无黏性颗粒在平面上的堆积角 被引量:3

Repose angle of non-adhesive granular materials on a plane
下载PDF
导出
摘要 运用连续介质模型和库仑屈服条件,介绍了库仑不等式的证明方法,研究了无黏性颗粒物质在自然堆积状态下的堆积角的形成机制及影响因素,通过理论模型导出理想状况下锥形堆的自然休止角与内摩擦角的关系.实验结果表明:颗粒的密度对于堆积角不存在确定的影响.不规则颗粒的自然休止角、内摩擦角与粒径间的变化趋势一致,粒径的分布对锥形堆的自然休止角产生影响;规则颗粒的几何尺寸对堆积角无明显影响,非球形颗粒的几何形状对堆积角有显著影响.底面摩擦系数较小时,锥体的堆积角与底面摩擦系数呈正相关,随着摩擦系数的增大,堆积角将达到饱和. The Coulomb inequality was introduced using continuous medium model under Coulomb yield condition.The formation mechanism and influential factors of the accumulation angle of non-adhesive particles in natural accumulation state were studied.The relation between natural repose angle and internal friction angle of conical pile under ideal conditions was deduced by theoretical model.In the experimental measurement range,the density of particles did not have a definite effect on the accumulation angle.For the irregular particles,the trend of the change of natural repose angle and the internal friction angle with particle size were consistent,and the distribution of particle size affected the natural repose angle of the conical pile.The geometric size of regular particles had no significant effect on the accumulation angle,while the geometric shape had significant effect.When the friction coefficient of the bottom surface was small,the accumulation angle of the conical pile was positively correlated with it.With the increase of the friction coefficient,the accumulation angle reached saturation.
作者 储时哉 董家豪 王思慧 万建国 周惠君 CHU Shi-zai;DONG Jia-hao;WANG Si-hui;WAN Jian-guo;ZHOU Hui-jun(College of Physics, Nanjing University, Nanjing 210093, China)
出处 《物理实验》 2019年第7期32-37,42,共7页 Physics Experimentation
关键词 颗粒物质 连续介质模型 堆积角 休止角 内摩擦角 granular material continuous medium model accumulation angle repose angle internal friction angle
  • 相关文献

参考文献2

二级参考文献38

  • 1陆坤权,刘寄星.颗粒物质(上)[J].物理,2004,33(9):629-635. 被引量:140
  • 2刘建锋,徐进,高春玉.土的直剪试验缺陷探讨[J].四川水力发电,2005,24(1):56-59. 被引量:22
  • 3季顺迎,Hayley H Shen.颗粒介质在类固-液相变过程中的时空参数特性[J].科学通报,2006,51(3):255-262. 被引量:7
  • 4de Gennes P G. Granular matter: A tentative view. Rev Mod Phys, 1999, 71:S374-S382.
  • 5Evesque P, de Gennes P G. Sur la statique des silos. C R Acad Sci Paris, 1998, 326:761--766.
  • 6Atman A P F, Brunet P, Geng J, et al. From the stress response function (back) to the sand pile dip. Eur Phys J E, 2005, 17:93--100.
  • 7Bouchaud J P, Cates M E, Claudin P. Stress-distribution in granular media and nonlinear-wave equation. J Phys I France, 1995, 5:639--656.
  • 8Cates M E, Wittmer J P, Bouchaud J P, et al. Jamming and static stress transmission in granular materials. Chaos, 1999, 9:511--522.
  • 9Wittmer J P, Cates M E, Claudin P. Stress propagation and arching in static sandpiles. J Phys I France, 1997, 7:39--80.
  • 10Wittmer J P, Claudin P, Cates M E, et al. An explanation for the central stress minimum in sand piles. Nature, 1996, 382:336--338.

共引文献17

同被引文献17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部