摘要
研究具有正负系数的脉冲时滞微分方程{[x(t)-R(t)x(t-r)]′+P(t)x(t-τ)-Q(t)x(t-σ)=0,t≥t0,x(tk^+)=bkx(tk),k=1,2,…解的振动性.其中R(t),P(t),Q(t)∈PC([t0,∞),R^+),r>0,τ≥0,σ≥0是某些常数,tk和bk是满足一定条件的实序列.
This paper studies the oscillation properties of the solutions to the impulsive delay differential equation with positive and negative coefficients{[x(t)-R(t)x(t-r)]′+P(t)x(t-τ)-Q(t)x(t-σ)=0,t≥t 0,x(tk^+)=b kx(tk),k=1,2,…,where R(t),P(t),Q(t)∈PC([t 0,∞),R^+).r>0,τ≥0,σ≥0 are some constants,tk and b k are real sequences satisfying certain conditions.
作者
陈洁
申建华
CHEN Jie;SHEN Jianhua(School of Science,Hangzhou Normal University,Hangzhou 311121,China)
出处
《杭州师范大学学报(自然科学版)》
CAS
2019年第4期358-364,共7页
Journal of Hangzhou Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11571088)
关键词
脉冲强迫
时滞微分方程
振动性
impulsive force
delay differential equation
oscillation