期刊文献+

基于视觉与IMU融合的采茶机器人位姿估计研究 被引量:5

Research on Tea Picking Robot’s Pose Estimation by Using Vision and IMU Fusion
下载PDF
导出
摘要 为实现采茶机器人在室外复杂茶园环境中实时定位与移动轨迹跟踪,并以较低的计算代价获得较高的精度,使用双目摄像头与IMU作为传感器,采用视觉惯性里程计算法OKVIS,通过实验对比视觉里程计、松耦合的视觉惯性里程计与紧耦合的视觉惯性里程计。结果表明该算法精度较高。最终采用OKVIS算法,在室外茶园环境中验证采茶机器人的实时定位与轨迹跟踪。实验结果表明,所提方案实际运行结果良好,可以满足采茶机器人位姿估计要求。 To achieve tea picking robot's real time pose estimation and trajectory tracking in complex outdoor environment of tea garden and get higher positioning accuracy through lower calculation cost, binocular camera and IMU are used as sensors, and visual-inertial odometry algorithm OKVIS is used to estimate robot's pose. According to the experiment, visual odometry, looselycoupled visual-inertial odometry and tightly-coupled visual-inertial odometry are compared. The experiment result suggests that this algorithm has a higher accuracy. Finally, OKVIS algorithm is adopted to verify tea picking robot's real time pose estimation and trajectory tracking in outdoor environment of tea garden. The result shows that the project suggested works well and it can satisfy the requirement of tea picking robot's pose estimation.
作者 周俊 吴明晖 王先伟 Zhou Jun;Wu Minghui;Wang Xianwei(School of Mechanical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China)
出处 《农业装备与车辆工程》 2019年第7期29-32,38,共5页 Agricultural Equipment & Vehicle Engineering
关键词 位姿估计 视觉里程计 视觉惯性里程计 多传感器融合 同时定位与地图构建 pose estimation visual odometry visual-inertial odometry multi-sensor fusion simultaneous localization and mapping
  • 相关文献

参考文献2

二级参考文献33

  • 1周船,谈大龙,朱枫.基于模型的位姿估计中优化方法研究[J].仪器仪表学报,2004,25(z1):122-124. 被引量:1
  • 2朱枫,侯菲莉.基于视觉的机动目标定位跟踪的滤波算法[J].仪器仪表学报,2006,27(2):165-170. 被引量:3
  • 3XU D,LI Y F.A new pose estimation method based on inertial and visual sensors for autonomous robots[J].IEEE International Conference on Robotics and Biomimetics,2007:405-410.
  • 4FISHLER M A,BOLLES R C.Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J].Communications of the ACM,1981,24(6):381-395.
  • 5DEMENTHON D F,DAVIS L S.Model-based object pose in 25 lines of code[J].International Journal on Computer Vision,1995,15:123-141.
  • 6GRAMEGNA T,VENTURINO L,et al.Optimization of the POSIT algorithm for indoor autonomous navigation[J].Robotics and Autonomous Systems,2004,48:145-162.
  • 7LIU M L,WONG K H.Pose estimation using four corresponding points[J].Pattern Recognition Letters,1999,20(1):69-74.
  • 8DRUMMOND T,CIPOLLA R.Application of lie algebras to visual servoing[J].International Journal of Computer Vision,2000,37 (1):21-41.
  • 9ORTEGON-AGUILAR J,BAYRO-CORROCHANO E.Lie algebra and system identification technique for 3D rigid motion estimation and monocular tracking[J].Journal of Mathematical Imaging and Vision,2006,25:173-185.
  • 10QUAN L,LAN ZH D.Linear n-point camera pose determination[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21 (7):774-780.

共引文献110

同被引文献92

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部