期刊文献+

面向B2C电商网站的消费者评论有用性评价模型研究 被引量:9

Research on the Model for Evaluating the‘Helpfulness’of Consumer Reviews towards B2C E-Commerce Website
下载PDF
导出
摘要 [目的/意义]目前各大电子商务网站产生了海量的评论信息,对于消费者而言,查阅和分析这些信息将面临巨大的挑战。因此,有必要对评论的有用性进行综合评价,为消费者过滤出真正有价值的内容。[方法/过程]为此,本文提出并研究了一种在线消费者评论的有用性评价模型,为消费者的网购决策提供支持。该模型主要基于分类算法,识别在线消费者评论的有用性,并按其概率值大小进行排序。根据在线消费者评论的特点,提取了一系列分类特征用于其有用性评价,然后利用支持向量机对评论进行分类并从中识别有用的记录。利用来自B2C电子商务网站的3个在线消费者评论数据集(手机、女鞋、糖果巧克力)对提出的模型进行实证分析。[结果/结论]研究结果显示,该模型能够量化地评价在线消费者评论的有用性并对其进行有效的分类排序。该模型主要依赖语义特征进行排序,而对非语义特征的依赖较少。通过选择合适的概率阈值,能够缩小验证空间,并显著提升分类精确度。 [Purpose/Significance]There is a huge number of consumer reviews in those large-scale e- commerce websites,which hence poses a challenge for a customer to go through all of them.It is necessary to evaluate the helpfulness of reviews and highlight valuable ones for potential consumers.[ Method/Process]Therefore,this paper tried to find out an approach to evaluate and rank online consumer reviews according to their helpfulness.In this study,it proposed a classification-based ranking model for evaluating the helpfulness and importance of online consumer reviews.It extracted and identified a series of features from reviews in order to evaluate their helpfulness.SVM model was used to classify and identify helpful reviews.This paper had carried out an empirical analysis on the proposed model by using three collections of online consumer reviews(mobile phones,women s shoes,and candy/chocolate).[Result/Conclusion]The empirical results showed that our model could be used to evaluate and rank the helpfulness of online consumer reviews quantatively.The model relied mainly on semantic features rather than non-semantic ones.Moreover,it could reduce the verification space and significantly increase the classification precision by choosing a suitable probability threshold value.
作者 毛郁欣 朱旭东 Mao Yuxin;Zhu Xudong(School of Management and E-Business,Zhejiang Gongshang University,Hangzhou 310018,China)
出处 《现代情报》 CSSCI 2019年第8期120-131,共12页 Journal of Modern Information
基金 国家社会科学基金项目“大数据背景下基于语义挖掘的网购消费者行为模式研究”(项目编号:16BGL193)
关键词 电子商务 网站 在线消费者评论 有用性 文本分类 支持向量机 e-commerce website online consumer review helpfulness text classification support vectormachine
  • 相关文献

参考文献5

二级参考文献81

  • 1托马斯J.约翰逊,芭芭拉K.凯,谭辛鹏.互联网与传统媒介信息可信度的比较[J].国际新闻界,1999,21(5):56-59. 被引量:36
  • 2张明新.网络信息的可信度研究:网民的视角[J].新闻与传播研究,2005,12(2):17-27. 被引量:30
  • 3张明新,曾宪明.网络使用、网络依赖与网络信息可信度之相关性研究[J].湖北大学学报(哲学社会科学版),2007,34(3):111-115. 被引量:17
  • 4Chevalier J A, Mayzlin D. The Effect of Word of Mouth on Sales : Online Book Reviews [ J . Journal of Marketing Research,2006,43 (3) :345 -354.
  • 5Ye Q, Zhang Z Q, Law R. Sentiment Classification of Online Re- views to Travel Destinations by Supervised Machine Learning Ap- proaches[ J ]. Expert Systems with Applications, 2009, 36 ( 3 ) : 6527 - 6535.
  • 6Miao Q L, Li Q D, Dai R W. AMAZING : A Sentiment Mining and Retrieval System [ J ]. Expert Systems with Applications, 2009, 36 (3) : 7192 -7198.
  • 7Liu J J,Cao Y B,Lin C Y,et al. Low -quality Product Review De- tection in Opinion Summarization[ C ]. In: Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Prague: Associa- tion Computational Linguistics,2007:334 -342.
  • 8Zhang Z. Weighing Stars: Aggregating Online Product Reviews for Intelligent E - commerce Applications [ J ]. IEEE Intelligent Sys- tems, 2008, 23(5):42-49.
  • 9Lau R Y K, Liao S S Y, Xu K Q. An Empirical Study of Online Consumer Review Spam : A Design Science Approaeh [ C ]. In : Proceedings of the 31st International Conference on Information Sys- tems,St. Louis,USA. Aceociation of Information Systems,2010.
  • 10Sen S, Lerman D. Why Are You Telling Me This? An Examination into Negative Consumer Reviews on the Web [ J ]. Journal of Inter- active Marketing, 2007, 21 (4) :76 -94.

共引文献121

同被引文献138

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部