期刊文献+

孔表面粗糙度与AE信号能量计数相关性的研究

Study on Correlation between Surface Roughness and Energy Count of AE Signal
下载PDF
导出
摘要 针对液体磁性磨具小孔光整加工时无法实时动态检测孔表面粗糙度的问题,将声发射无损检测技术应用在液体磁性模具孔光整加工技术中,通过对采集到的AE信号进行分析研究,得出声发射信号与工件表面粗糙度有明显的相关性,通过特征值参数分析方法提取了能量计数AE特征值,得出能量计数的分布可以用来表征工件表面粗糙度变化情况。研究结果为液体磁性磨具光整加工的实时动态检测提供了有价值的参考。 In view of the problem that the surface roughness of the hole can not be detected in machining in real-time,the acoustic emission(AE)nondestructive testing technology is applied to the processing technology of the fluid magnetic abrasive.Through the analysis and study of the collected AE signal,it was found that the AE signal has a significant correlation with the surface roughness of the workpiece.The characteristic value of the energy count AE was extracted by the eigenvalue parameter analysis method,and the distribution of the energy count could be used to characterize the change of the surface roughness of the workpiece.This study result provides a valuable reference for real-time dynamic detection of fluid magnetic abrasive.
作者 侯治秀 孙桓五 段海栋 桑媛园 HOU Zhixiu;SUN Huanwu;DUAN Haidong;SANG Yuanyuan(School of Mechanical Engineering,Taiyuan University of Technology,Taiyuan Shanxi 030024,China;National Demonstration Center for Experimental Coal Resource and Mining Equipments Education,Taiyuan Shanxi 030024,China)
出处 《机床与液压》 北大核心 2019年第13期1-4,45,共5页 Machine Tool & Hydraulics
基金 国家自然科学基金资助项目(51075294) 山西省自然科学基金资助项目(201601D101060) 精密与特种加工教育部重点实验室开发课题(JMTZ201603)
关键词 液体磁性磨具 小孔 声发射 能量计数 Fluid magnetic abrasives Holes Asoustic emission Energy count
  • 相关文献

参考文献3

二级参考文献11

  • 1Inasaki I.Application of acoustic emission sensor for monitoring machining processes. Ultrasonics . 1998
  • 2Cao Hongrui,Chena Xuefeng,Zia Yanyang, et al.End milling tool breakage detection using lifting scheme and Mahalanobis distance. International Journal of Machine Tools &Manufacture . 2008
  • 3Ertekin Y M,Kwon Yongjin,Tseng Tzu-Liang (Bill).Identification of common sensory features for the control of CNC milling operations under varying cutting conditions. International Journal of Ma- chine Tools &Manufacture . 2003
  • 4Hillaire R,Wright P K.A process monitoring sys- tem for process-based product validation. Journal of Manufacturing Processes . 2005
  • 5Chung K T,Geddam A.A Multi -sensor Approach to the Monitoring of End Milling Operations. Journal of Materials . 2003
  • 6Jemielniak K,Arrazola P J.Application of AE and cutting forcesignals in tool condition monitoring in micro-milling. CIRPJournal of Manufacturing Science and Technology . 2008
  • 7Iulian Marinescu,,Dragos Axinte.A critical analysis of effectiveness of acoustic emission signals to detect tool and workpiece malfunctions in milling operations. International Journal of Machine Tools & Manufacture . 2008
  • 8罗广恩,崔维成.金属疲劳裂纹扩展速率的贝叶斯正则化BP神经网络预测[J].船舶力学,2012,16(4):433-441. 被引量:8
  • 9张卫冬,张习文,杨斌,丁贤飞,艾轶博.基于声发射信号的铝合金材料损伤表征识别[J].北京科技大学学报,2013,35(5):626-633. 被引量:8
  • 10徐继勇,张晶晶,赵俊丽.金属板材拉深成型裂纹识别实验[J].机械设计与制造,2013(10):246-248. 被引量:1

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部