摘要
The adsorption performance of toluene on ultra-stable Y zeolite (USY) was studied via dynamic adsorption. The eff ects of bed temperature, initial concentration, and feed fl ow rate on adsorption were investigated. The Yoon-Nelson model was used to fi t the toluene breakthrough curves. The length of mass transfer zone was calculated based on breakthrough curves. The Langmuir-Freundlich model fi t the adsorption isotherms of toluene on USY, which indicated that the surface of USY was heterogeneous. The adsorption isosteric heat calculated from adsorption isotherms ranged from 54.3 to 69.8 kJ/mol, indicating physical adsorption. The combined technique of temperature swing adsorption with vacuum swing adsorption (TVSA) exhibited excellent desorption performance, which was attributed to the low desorption activation energy. Under optimized TVSA conditions, the desorption rate of toluene reached 90.6% within 10 min. The long-term cyclic utilization results indicated that the adsorption capacity of USY was stable.
The adsorption performance of toluene on ultra-stable Y zeolite(USY) was studied via dynamic adsorption. The effects of bed temperature, initial concentration, and feed flow rate on adsorption were investigated. The Yoon–Nelson model was used to fit the toluene breakthrough curves. The length of mass transfer zone was calculated based on breakthrough curves. The Langmuir–Freundlich model fit the adsorption isotherms of toluene on USY, which indicated that the surface of USY was heterogeneous. The adsorption isosteric heat calculated from adsorption isotherms ranged from 54.3 to 69.8 kJ/mol, indicating physical adsorption. The combined technique of temperature swing adsorption with vacuum swing adsorption(TVSA) exhibited excellent desorption performance, which was attributed to the low desorption activation energy. Under optimized TVSA conditions, the desorption rate of toluene reached 90.6% within 10 min. The long-term cyclic utilization results indicated that the adsorption capacity of USY was stable.