摘要
信息技术的高速发展为旅游研究提供了新的数据和方法。该文运用数据驱动的客源市场研究方法,采用手机信令大数据,更新获取游客数量、来源地等信息,确立了一套基于手机信令数据的客源市场划分方法,弥补了现有旅游客源市场空间划分方法的不足。将该方法用于南京市旅游客源市场的实证分析,发现南京客源市场基本呈现空间递减规律和时间波动规律,并识别出300km和1600km距离为客源波动线,呈现出明显的东部指向、近域指向等特征。将研究结果与抽样调查得到的统计数据相比,发现两者高度吻合,从而在理论和实践上验证了数据驱动的旅游客源市场研究方法的有效性和合理性。最后提出数据驱动的客源市场研究的不足和未来研究展望,对南京智慧旅游建设具有一定的实践意义。
Tourist source market is an important part of tourism marketing and is critical to destination marketing and urban planning.Identifying tourist source market is a fundamental part of the future tourism development policy of the destination.With the rapid development of information technology,mobile phone data has been used in research.However,researches using mobile cellular data are much fewer in domestic tourism field.Therefore,this study tries to establish an innovative data driven approach,based on mobile phone cellular data,to innovate a method on identifying and dividing tourist source market,by gaining information such as the quantity of tourists and their origins through regular data updates between mobile phones and base stations.We mainly focused on spatial and temporal flow analysis according to the mobile phone cellular data,and found out that tourist numbers decrease dramatically at the point of 300 km and 1 600 km,showing a clear routine of distance decreasing law.To prove its accuracy and efficiency,we collected the sample survey data from 2012 to 2016 issued by the Nanjing Tourism Development Committee to find out the similarity.And the comparison of two methods shows a high degree of coincidence.Also,the number of visitors on weekends is significantly higher than weekdays.Thus,Nanjing can implement precise tourism marketing for specific regions.This study also contributes to the development of the smart tourism.Moreover,the study abandons traditional methods of complicated calculation formula,creating a new data-driven research method for the identification of tourist source market.
作者
徐菲菲
王旭
徐俐
胡明星
PAN Bing
XU Fei-fei;WANG Xu;XU Li;HU Ming-xing;PAN Bing(School of Humanity,Southeast University,Nanjing 211189,China;School of Architecture,Southeast University,Nanjing 210096,China;Department of Park Recreation,The Pennsylvania State University,Pennsylvania State 16802,the United State)
出处
《地理与地理信息科学》
CSCD
北大核心
2019年第4期70-75,共6页
Geography and Geo-Information Science
基金
国家自然科学基金项目(41571133、41711530650)
中央高校基本科研业务经费项目(2242017S10005、2242015R30020)
关键词
旅游客源市场
手机信令
大数据
南京
tourist source market
cellular signal
big data
Nanjing