期刊文献+

Effects of helium irradiation dose and temperature on the damage evolution of Ti3SiC2 ceramic

Effects of helium irradiation dose and temperature on the damage evolution of Ti3SiC2 ceramic
下载PDF
导出
摘要 The effects of 400 keV helium ion irradiation dose and temperature on the microstructure of the Ti3SiC2 ceramic were systematically investigated by grazing incidence x-ray diffraction, scanning electron microscopy, and transmission electron microscopy.The helium irradiation experiments were performed at both room temperature(RT) and 500℃ with a fluence up to 2.0 × 1017 He+/cm2 that resulted in a maximum damage of 9.6 displacements per atom.Our results demonstrate that He irradiations produce a large number of nanometer defects in Ti3SiC2 lattice and then cause the dissociation of Ti3SiC2 to TiC nano-grains with the increasing He fluence.Irradiation induced cell volume swelling of Ti3SiC2 at RT is slightly higher than that at 500℃, suggesting that Ti3SiC2 is more suitable for use in a high temperature environment.The temperature dependence of cell parameter evolution and the aggregation of He bubbles in Ti3SiC2 are different from those in Ti3AlC2.The formation of defects and He bubbles at the projected depth would induce the degradation of mechanical performance. The effects of 400 keV helium ion irradiation dose and temperature on the microstructure of the Ti3SiC2 ceramic were systematically investigated by grazing incidence x-ray diffraction, scanning electron microscopy, and transmission electron microscopy.The helium irradiation experiments were performed at both room temperature(RT) and 500℃ with a fluence up to 2.0 × 1017 He+/cm2 that resulted in a maximum damage of 9.6 displacements per atom.Our results demonstrate that He irradiations produce a large number of nanometer defects in Ti3SiC2 lattice and then cause the dissociation of Ti3SiC2 to TiC nano-grains with the increasing He fluence.Irradiation induced cell volume swelling of Ti3SiC2 at RT is slightly higher than that at 500℃, suggesting that Ti3SiC2 is more suitable for use in a high temperature environment.The temperature dependence of cell parameter evolution and the aggregation of He bubbles in Ti3SiC2 are different from those in Ti3AlC2.The formation of defects and He bubbles at the projected depth would induce the degradation of mechanical performance.
作者 申华海 向霞 张海斌 周晓松 邓洪祥 祖小涛 Hua-Hai Shen;Xia Xiang;Hai-Bin Zhang;Xiao-Song Zhou;Hong-Xiang Deng;Xiao-Tao Zu
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第7期361-369,共9页 中国物理B(英文版)
基金 Project supported by the President Foundation of the China Academy of Engineering Physics(Grant No.YZJJLX2018003) the National Natural Science Foundation of China(Grant No.21601168)
关键词 MAX Ti3SiC 2 HELIUM IRRADIATION He BUBBLE MAX Ti3SiC 2 helium irradiation He bubble
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部