期刊文献+

多元数据离群点探测的倾斜重加权方法

Multivariate Outlier Detection Based on Tilting Minimum Covariance Determinant Method
原文传递
导出
摘要 在对数据的处理中,关于多元数据的离群点的探测日益受到重视。然而现有的方法存在着不够稳健、准确率较低等缺点。本文提出了两种多元数据离群点探测方法,并在重加权最小协方差行列式方法的基础上,采用更为科学的倾斜重加权方法,计算出更为稳健的估计量,从而达到更加有效准确地探测离群点的目的。 Multivariate outlier detection attracts more and more interests in data processing nowadays. However, the existing methods are often not robust or accurate enough. This paper summarizes two kinds of existing met hods, and proposes a tilting method based on Reweighted Minimum Covariance Det erminant. Using the Tilting Minimum Covariance Det erminant, we can get more rob ust estima tors so as to achieve more effective and accurate detection of outliers.
作者 张若璇 田茂再 ZHANG Ruo-xuan;TIAN Mao-zai(The Center for Applied Statistics of Renmin University of China, Beijing 100872, China;School of Statistics, Renmin University of China, Beijng 100872, China;School of Statistics, Lanzhou University of Finance and Economic, Gansu Lanzhou 730101, China;Institue of Statistics and Information, Xinjiang University of Finance and Economic, Xinjiang Urumqi 830001, China)
出处 《数理统计与管理》 CSSCI 北大核心 2019年第4期619-627,共9页 Journal of Applied Statistics and Management
基金 全国统计科研计划项目(2016LD03) 中国人民大学科学研究基金项目成果(18XNL012) 新疆维吾尔自治区普通高等学校人文社会科学基地基金资助
关键词 离群点 多元数据 最小协方差行列式 重加权 倾斜重加权 outlier multivariate data minimum covariance determinant reweight tilting
  • 相关文献

参考文献1

二级参考文献14

  • 1Manyika J,Chui M,Brown B,et al.Big Data:The Next Frontier for Innovation,Competition,and Productivity [M].McKinsey Global Institute,2011.
  • 2Grobelnik,Marko.Big Data Tutorial [EB/OL].http://videolectures.net/eswc2012_grobelnik_big_data/.
  • 3Hamish Barwick.The "four Vs" of Big Data.Implementing Information Infrastructure Symposium[EB/OL].http://www.computerworld.coin.au/article/396198/iiis_four_vs_big_data/.
  • 4National Research Council.Frontiers in Massive Data Analysis [R].Washington:The National Academies Press,2013.
  • 5Drineas P,Mahoney M W,Muthukrishnan S.Sampling algorithms for L2 regression and applications [J].Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms,2006,59(5):685-697.
  • 6Drineas P,Mahoney M W,Muthukrishnan S,Sarlos T.Faster least squares [J].Numerische Mathe- matik,2011,117:219-249.
  • 7Drineas P,Magdon-Ismail M,Mahoney M W,et al.Fast approximation of matrix coherence and statistical leverage [J].The Journal of Machine Learning Research,2012,13(1):3475-3506.
  • 8Mahoney M W.Randomized algorithms for matrices and data [J].Foundations and Trends in Machine Learning,2011,3(2):123-224.
  • 9Ma P,Mahoney M W,Yu B.A statistical perspective on algorithmic leveraging [R].Technical report,2013,Preprint:arXiv:1306.5362.
  • 10Sinha M, Jang Y C,Oh J,Khong D,et al.Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle [J].Science,2014,344(6184):649-52.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部