期刊文献+

四元数矩阵方程AXB=C通解中的复矩阵分量极秩 被引量:3

Extremal ranks of complex components in general solutions of the matric equation AXB=C over quaternion field
下载PDF
导出
摘要 借助四元数矩阵的复表示方式Φ(·),将四元数体上的线性矩阵方程AXB=C转换为复数域上的等价复矩阵方程Φ(A)XΦ(B)=Φ(C).同时,利用该复矩阵方程的通解和分块矩阵的极秩性质,求出原四元数矩阵方程通解中复矩阵分量集{X0}和{X1}的最大秩、最小秩公式.作为这些极秩公式的应用,推导出了该四元数矩阵方程通解中包含复矩阵解或全为复矩阵解的充要条件. By using a complex representation of quaternion matrix Φ(·),the linear matrix equation AXB=C over the quaternion field is changed into the matrix equationΦ(A)XΦ(B)=Φ(C)over the complex field.Then according to general solutions of this complex matrix equation and numerous properties regarding extreme ranks of block matrix, formulas of extreme ranks of complex matrices {X0},{X1} are established.These complex matrices are complex components of general solutions X=X0+X1j of the quaternion matrix equation.As an application,we give necessary and sufficient conditions for following special cases:there exists at least a complex matrix X in general solutions of the matrix equation;and all general solutions of the matrix equation are complex ones.
作者 连德忠 谢锦山 LIAN Dezhong;XIE Jinshan(School of Mathematical and Information Engineering,Longyan University,Longyan 364012,China)
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第4期543-546,共4页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(11601214,11526107) 福建省自然科学基金(2015J05010) 福建省教育厅课程思政项目(KC18084) 福建省教育厅中青年项目(JAT160492,JAT160490)
关键词 四元数 矩阵方程 复表示 分块矩阵 极秩 quaternion matric equations complex representation block matrix extremal ranks
  • 相关文献

参考文献1

二级参考文献12

  • 1Hungerford T W. Algebra[M]. New York, USA: Spring- Verlag, 1980.
  • 2Zhang F. Quaternions and matrices of quaternions[J].Linear Algebra Appl, 1997,251 : 21-57.
  • 3Wang Q W,Sun J H,Li S Z. Consistency for bi(skew) symmetric solutions to systems of generalized Sylvester equations over a finite central algebra [J].Linear Algebra Appl, 2002,353 : 169-182.
  • 4Wei M,Wang Q.On rank-constrained Hermitian nonneg- five-definite least squares solutions to the matrix equation AXA H = B [J].Int J Comput Math, 2007,84 : 945-952.
  • 5Jiang T, Chen L. Algebraic algorithms for least squares problem in quaternionic quantum theory [J]. Computer Physics Communications, 2007,176 : 481-485.
  • 6Jiang T, Zhao J, Wei M. A new technique of quaternion equality constrained least squares problem [J]. Journal of Computational and Applied Mathematics, 2008,216 : 509-513.
  • 7Liu Y,Tian Y,Takane Y.Ranks of Hermitian and skew- Hermitian solutions to the matrix equation AXAH = B [J].Linear Algebra Appl, 2009,431 : 2359-2372.
  • 8Tian Y. Completing block matrices with maximal and minimal ranks [J].Linear Algebra Appl,2000,321:327-325.
  • 9Tian Y,Liu Y.Extremal ranks of some symmetric matrix expressions with applications [J]. SIAM J Matrix Anal Appl, 2006,28 : 890-905.
  • 10Liu Y,Tian Y.More on extremal ranks of the matrix ex- pressions A - BX X* B* with statistical applications [J].Numer Linear Algebra Appl, 2008,15 : 307-325.

共引文献2

同被引文献8

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部