摘要
借助四元数矩阵的复表示方式Φ(·),将四元数体上的线性矩阵方程AXB=C转换为复数域上的等价复矩阵方程Φ(A)XΦ(B)=Φ(C).同时,利用该复矩阵方程的通解和分块矩阵的极秩性质,求出原四元数矩阵方程通解中复矩阵分量集{X0}和{X1}的最大秩、最小秩公式.作为这些极秩公式的应用,推导出了该四元数矩阵方程通解中包含复矩阵解或全为复矩阵解的充要条件.
By using a complex representation of quaternion matrix Φ(·),the linear matrix equation AXB=C over the quaternion field is changed into the matrix equationΦ(A)XΦ(B)=Φ(C)over the complex field.Then according to general solutions of this complex matrix equation and numerous properties regarding extreme ranks of block matrix, formulas of extreme ranks of complex matrices {X0},{X1} are established.These complex matrices are complex components of general solutions X=X0+X1j of the quaternion matrix equation.As an application,we give necessary and sufficient conditions for following special cases:there exists at least a complex matrix X in general solutions of the matrix equation;and all general solutions of the matrix equation are complex ones.
作者
连德忠
谢锦山
LIAN Dezhong;XIE Jinshan(School of Mathematical and Information Engineering,Longyan University,Longyan 364012,China)
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第4期543-546,共4页
Journal of Xiamen University:Natural Science
基金
国家自然科学基金(11601214,11526107)
福建省自然科学基金(2015J05010)
福建省教育厅课程思政项目(KC18084)
福建省教育厅中青年项目(JAT160492,JAT160490)
关键词
四元数
矩阵方程
复表示
分块矩阵
极秩
quaternion
matric equations
complex representation
block matrix
extremal ranks