期刊文献+

加速应力下随机退化设备剩余寿命预测方法 被引量:5

A Remaining Useful Lifetime Prediction Method for Stochastic Degradation Device Under Accelerated Stress
下载PDF
导出
摘要 针对步进加速退化试验中具有性能退化趋势的随机退化设备,采用非线性Wiener过程,建立与设备退化特征相符的步进加速退化模型;采用极大似然估计(MLE)法,求解出先验参数估计值;利用目标设备当前监测数据,基于贝叶斯方法更新随机系数后验分布;利用全概率公式,推导考虑随机系数估计不确定性的设备剩余寿命分布;通过算例分析验证了所提方法的正确性和优势。 Aiming at the stochastic degradation device with performance degradation trend in the Step-Stress Accelerated Degradation Test(SSADT)a nonlinear Wiener process is used to establish a step-accelerated degradation model consistent with the degradation characteristics of the device.The Maximum Likelihood Estimation(MLE)algorithm is used to obtain the estimates of prior parameters.The current monitoring data of the target device is used to update the posterior distribution of random coefficients based on Bayesian method.The Remaining Useful Lifetime(RUL)distribution of the device considering the uncertainty of random coefficient estimation is derived by using the full probability formula.The correctness and superiority of the proposed method are verified by an example.
作者 解江 蔡忠义 王泽洲 李姗姗 XIE Jiang;CAI Zhong-yi;WANG Ze-zhou;LI Shan-shan(Xijing College,Xi'an 710123,China;Equipment Management & UAV Engineering College,Air Force Engineering University,Xi'an 710051,China)
出处 《电光与控制》 CSCD 北大核心 2019年第7期75-79,共5页 Electronics Optics & Control
基金 国家自然科学基金(71601138) 中国博士后科学基金(2017M623415)
关键词 剩余寿命预测 加速退化建模 非线性Wiener过程 随机系数 测量误差 RUL prediction accelerated degradation modeling nonlinear Wiener process random coefficient measurement error
  • 相关文献

参考文献5

二级参考文献75

  • 1姜同敏,王晓红,等.可靠性试验技术[M].北京:北京航空航天大学出版社,2012.
  • 2Luo J H, Pattipati K R,Qiao L,et al.Model-based prognostic techniques applied to a suspension system[J].IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans.2008,38(5):1156-1168.
  • 3Tian Z G, Wong L,Safaei N.A neural network approach for remaining useful life prediction utilizing both failure and suspension histories[J].Mechanical Systems and Signal Processing.2010,24(5):1542-1555.
  • 4Carr M J, Wang W B.Modeling failure modes for residual life prediction using stochastic filtering theory[J].IEEE Transactions on Reliability.2010,59(2):346-355.
  • 5Chinnam R B, Baruah P.Autonomous diagnostics and prognostics in machining processes through competitive learning driven HMM-based clustering[J].International Journal of Production Research.2009,47(23):6739-6758.
  • 6Liao H T, Zhao W B,Guo H R.Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model[C]//Proceedings-Annual Reliability and Maintainability Symposium.Piscataway,NJ:IEEE,2006:127-132.
  • 7Rabiner L R, Huang B H.An introduction to hidden Markov models[J].IEEE Signal Processing Magazine,1986,3(1):4-16.
  • 8Lee J M, Kim S J,Hwang Y,et al.Diagnosis of mechanical fault signals using continuous hidden Markov model[J].Journal of Sound and Vibration,2004,27(6):1065-1080.
  • 9Ghasemi A, Yacout S,Ouali M S.Evaluating the reliability function and the mean residual life for equipment with unobservable states[J].IEEE Transactions on Relibility.2010, 59(1):45-54.
  • 10.IARDINE A K S, LIN D, BANJEVIC D. A review on machineD, diagnostics and prognostics implementing condition-based maintenance [J]. Mechanical systems and signal processing, 2006, 20(7): 1483-1510.

共引文献67

同被引文献29

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部