摘要
为有效重建冲击波超压曲线,提出了一种空气中冲击波曲线重建方法,利用Gauss-Newton算法对实测冲击波曲线进行非线性回归,目标参数按梯度迭代获取最佳回归曲线,间接得到实测曲线的衰减系数;在地面以爆源为原点建立直角坐标系,测点曲线的峰值、衰减系数与测点坐标具有多项式函数关系,通过Zippel插值算法获取其中各项系数的全局最优解,反演未知测点的衰减系数及超压峰值,重建冲击波曲线。研究表明,重建曲线与原始曲线的平均误差在17%以内。
To reconstruct shock wave overpressure curve effectively,a method on reconstructing the shock wave curve in the air was proposed.Gauss-Newton algorithm was used to get the nonlinear regression curve of the actual shock wave curve,getting the best regression curve from the gradient-direction iterative process of the target parameters and obtaining the actual attenuation coefficient.Establishing a cartesian coordinate system with the explosive source as the origin on the ground,overpressure peak and attenuation coefficient of test point respectively have the polynomial function relationship with test point coordinates.Zippel interpolation algorithm was used to obtain the global optimal solutions of the items' weights in the function,obtaining the overpressure peak and attenuation coefficient of the unknown test points,and reconstructing the shock wave curve.The result showed that the average errors of reconstructed attenuation curves obtained by the method and actual measurement curves is within 17%.
作者
姚悦
丁永红
裴东兴
张晓光
YAO Yue;DING Yong-hong;PEI Dong-xing;ZHANG Xiao-guang(Science and Technology on Electric Test and Measurement Laboratory,North University of China,Taiyuan,Shanxi 030051,China)
出处
《计量学报》
CSCD
北大核心
2019年第4期636-641,共6页
Acta Metrologica Sinica
基金
国家自然科学基金(61701445)
关键词
计量学
冲击波超压曲线
非线性回归
多项式插值
超压场重建
metrology
shock wave overpressure curve
nonlinear regression
polynomial interpolation
reconstruction of overpressure field