期刊文献+

浅谈高数中分式函数极限的求解方法

On the Solution of the Limit of Fractional Function in Higher Score
下载PDF
导出
摘要 函数极限的计算是高等数学的重要内容。本文详细阐述了分式函数极限的计算方法,并重点分析了0/0型分式函数极限的求解方法:分解因式、有理化、等价无穷小替换、洛必达法则及上述四种方法综合应用约去零因子。 The calculation of function limit is an important part of higher mathematics.In this paper,the calculating method of the limit of fractional function is elaborated in detail,and the solving method of the limit of fractional function is emphatically analyzed:decomposition factor,rationalization,equivalent infinitesimal substitution,L’Hospital’s rule and the above four methods are combined to apply approximately zero factor.
作者 尤雪莲 You Xuelian
出处 《数码设计》 2018年第13期251-251,共1页 Peak Data Science
基金 华南农业大学教改项目研究成果,项目编号JG2018125.
关键词 极限 分式函数 零因子 分解因式 有理化 等价无穷小替换 洛必达 Limit Fractional function Zero factor Decomposition factor Rationalization Equivalent infinitesimal substitution L’Hospital’s rule
  • 相关文献

参考文献4

二级参考文献20

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部