期刊文献+

角度惩罚精英策略的绿色供应链伙伴选择研究

Research on Partner Selection in Green Supply Chain Based on Angle Penalty Distance Elite Selection Strategy
下载PDF
导出
摘要 针对绿色供应链伙伴选择中的典型高维目标优化问题,以运营成本、配送时间、产品质量和绿色度为优化目标,建立三阶段绿色供应链网络优化模型,提出一种角度惩罚距离(APD)精英策略的高维目标优化算法NS-RVEA进行求解.该算法对APD机制仅使用分解策略优化种群,忽略个体间Pareto关系,易导致种群退化等不足进行改进,引入非支配排序方法,先对子种群内个体进行Pareto非支配排序,再通过APD机制对剩余个体进行筛选,在维持种群多样性的同时提高选择压力和收敛速度.仿真结果表明,NS-RVEA具有收敛性强、全局性好和计算复杂度低等优点,所得解集在IGD*指标、Pareto最优解平均个数和算法运行时间等多个方面均优于MOGA、NSGA-Ⅱ、MOEA/D和RVEA. Aiming at the problem of the typical many-objective optimization in the partner selection of green supply chain,the three stage green supply chain network optimization model was established by taking operation cost,distribution time,product quality and green degree as the optimization goal,and the many-objective optimization algorithm based on angle penalty distance(APD)elite strategy was proposed to solve this problem.The APD mechanism only uses decomposition strategy to optimize the population,ignoring the Pareto relationship between individuals,and easier leading to population deficiencies.This paper proposed a many-objective optimization algorithm improved by introducing non-dominated sorting methods to first perform Pareto non-dominated sorting of individuals within subpopulations.Then the remaining individuals were screened through the APD mechanism,which increased selection pressure and convergence speed while maintaining population diversity.The simulation results revealed that the proposed algorithm had the advantages of strong convergence,good overall performance and low computational complexity.The set of solutions was superior to the MOGA,NSGA-II,MOEA/D and RVEA in many aspects such as the IGD*index,the average number of the Pareto optimal solutions and the running time.
作者 郭海东 王丽萍 章鸣雷 GUO Hai-dong;WANG Li-ping;ZHANG Ming-lei(College of Business Administration,Zhejiang University of Technology,Hangzhou 310023,China;College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China;College of Business,Zhejiang Industry Polytechnic College,Shaoxing 312000,China;College of Educational Science & Technology,Zhejiang University of Technology,Hangzhou 310023,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2019年第7期1442-1448,共7页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61472366,6379077)资助 浙江省自然科学基金项目(LY17F020022)资助 浙江省重大科技计划项目(2018C01080)资助
关键词 绿色供应链 伙伴选择 高维目标优化 角度惩罚距离 green supply chain partner selection many-objective optimization angle penalty distance
  • 相关文献

参考文献4

二级参考文献28

  • 1RING P S, VAN DE VEN A H. Developmental processes of cooperative inter-organizational relationships[J]. Academy of Management Review,1994,19(1) :90-118.
  • 2JOHNSTON D A,MCCUTCHEON D M,STUART F I,et al.Effects of supplier trust on performance of cooperative supplier relationships[J]. Journal of Operations Management, 2004,22(1):23-38.
  • 3SMITH J B, BARCLAY D W. The effects of organizational differences and trust on the effectiveness of selling partner relationships[J]. Journal of Marketing, 1997,61 (1): 3- 21.
  • 4CAO L J. Support vector machines experts for time series forecasting[J]. Neurocomputing, 2003, (51): 321 - 339.
  • 5POGGIO T,RIFKIN R,MUKHERJEE S,et al. General conditions for predictivity in learning theory[J]. Nature, 2004,428(25) :419-422.
  • 6VAPNIK V N. The nature of statistical learning theory[M].New York, NY, USA : Springer, 2000.
  • 7CRISTIANINI N, SHAVE-TAYLOR J. An introduction to support vector machines [M]. New York, NY, USA: Cambridge, 2000.
  • 8AI W G,SUN J,LI H. Distributed marketing decision support system based on multi intelligent agent [A]. Proceedings of the Third International Conference on Machine Learning and Cybernetics[C]. New York, NY, USA: IEEE Press, 2004. 233-238.
  • 9WOOLDRIDGE M, JENNINGS N J. Cooperative problem solving[J]. Journal of Logic and Computation, 1999,9(4) :563-592.
  • 10MALONI M J,BENTON W C. Power influences in the supply chain[J]. Journal of Business Logistics, 2000,21 ( 1 ): 49-74.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部