期刊文献+

基于多角度线性回归分析的第32届奥运会前十名国家成绩预测

Performance Forecast of the Top 10 Countries of the 32nd Olympic Games Based on Multi-Angle Linear Regression Analysis
下载PDF
导出
摘要 本文主要探讨了奥运会奖牌榜的预测问题,主要通过建立线性回归(一元及多元)模型、使用SPSS和Excel等软件对历届奥运会奖牌榜进行多角度分析并得到最优预测模型。在模型一的建立中,本文使用时间序列法进行预测、建立回归模型。由于模型一中对于某些国家奖牌榜预测与实际出入较大,在模型二的建立中,本文综合考虑了GDP,人口数量,东道主效应等因素建立多元回归模型。综合模型一与模型二的求解结果,得到2020年东京奥运会奖牌榜前十名及其金牌数与奖牌数。 this paper mainly discusses the forecasting problem of Olympic medals list, mainly through the establishment of linear regression(one dollar and multiple elements) model, the use of SPSS and Excel and other software to carry out multi-angle analysis of successive Olympic medals list and get the best prediction model. In the establishment of model one, this paper uses time series method to predict and establish regression model. Due to the large difference between the forecast and the actual number of medals in some countries in model 1, in the establishment of model 2, this paper comprehensively considers the factors such as GDP, population, and host effect to establish a multiple regression model. The results of the comprehensive model 1 and model 2 solutions obtained the top ten medals in the 2020 Tokyo Olympic Games and the number of gold medals and medals.
作者 李贵熙 綦文彬 侯宗润 LI Guixi;QI Wenbin;HOU Zongrun(Qingdao Second Middle School,Shandong Province,Qingdao 266000,China)
出处 《数码设计》 2018年第6期256-260,共5页 Peak Data Science
关键词 线性回归 时间序列法 奥运会奖牌预测 误差分析 数学建模 Linear regression Time series method Olympic medal forecast Error analysis Mathematical modeling
  • 相关文献

参考文献6

二级参考文献30

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部