期刊文献+

基于公共空间视频的人脸情绪识别 被引量:1

Facial Emotion Recognition Based on Public Space Video
下载PDF
导出
摘要 针对公共空间中人脸情绪识别准确率不高的问题,提出一种结合不同感受野和双流卷积神经网络的人脸情绪识别方法。首先建立基于公共空间视频的人脸表情数据集;然后设计一个双流卷积网络,以尺寸为224×224的单帧人脸图像输入卷积神经网络(convolution neural network,CNN),分析图像纹理静态特征;以尺寸为336×336视频序列输入CNN网络,再将提取的特征送入长短期记忆网络(long short term memory network,LSTM)分析局部、全局运动特征;最后通过Softmax分类器将两通道网络的描述子进行加权融合,得到分类结果。结果表明,本文方法能有效利用不同感受野的信息特征清晰识别公共空间的4种典型人脸情绪,识别准确率达88.89%。 Aiming at the low accuracy of facial emotion recognition in public space, a method of facial emotion recognition, which was based on different receptive fields and two-stream convolution neural network, was proposed. Firstly, a facial expression dataset based on public spatial video was established. Then, a two-stream network was designed, for which a single face image with a size of 224×224 was input into convolutional neural network(CNN) to analyze the static characteristics of the image, and a 336 × 336 video sequence was input to CNN network, the extracted features were then sent to the long and short term memory network(LSTM) to analyze the local and global motion peculiarity. Finally, the softmax classifier was used to fuse the descriptors of the two channel to get the classification results. The results show that this method can effectively identify four typical facial emotions in public space by using the information features of different receptive fields, and the recognition accuracy reaches 88.89%.
作者 王露 唐韬 卿粼波 周文俊 熊文诗 滕奇志 WANG Lu;TANG Tao;QING Linbo;ZHOUWenjun;XIONGWenshi;TENG Qizhi(School of Electronic Information Engineering,Sichuan University,Chengdu 610065,China;School of Electronic Information and Electrical Engineering,Shanghai Jiaotong University,Shanghai 200030,China)
出处 《安徽工业大学学报(自然科学版)》 CAS 2019年第1期68-73,79,共7页 Journal of Anhui University of Technology(Natural Science)
基金 国家自然科学基金项目(61871278) 四川省科技计划项目(2018HH0143) 四川省教育厅科研项目(18ZB0355)
关键词 人脸情绪识别 感受野 卷积神经网络 表情数据集 双流网络 facial emotion recognition receptive field convolution neural network expression dataset two-stream network
  • 相关文献

参考文献3

二级参考文献17

共引文献109

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部