期刊文献+

小鼠气管–支气管上皮细胞的气–液界面培养

Air-liquid interface culture of mouse tracheal-bronchial epithelial cells
原文传递
导出
摘要 目的建立一种小鼠气管–支气管上皮细胞气–液界面(ALI)培养及纤毛摆动频率测量的方法,最大程度还原气道上皮的生理功能。方法利用1 mg/mLⅪⅤ型链蛋白酶冷消化的方法获取BALB/c小鼠气管–支气管上皮细胞,筛选出最佳消化时长以保证所得细胞的数量及活力。差速贴壁法去除成纤维细胞后,接种于Ⅰ型鼠尾胶原预包被的Transwell小室,用不同培养基进行增殖期和ALI分化期培养。结果采用链蛋白酶冷消化12 h、14 h和16 h所得细胞数目分别为(1.78±0.33)×10^5、(1.93±0.26)×10^5和(2.01±0.28)×10^5,经台盼蓝染色活细胞率分别为(96.86±0.25)%、(94.73±1.63)%和(86.87±5.95)%。1周左右细胞铺满小室,继续ALI培养2~3周后光学显微镜下可见纤毛节律性摆动,电镜及免疫荧光均证实纤毛结构。培养所得细胞纤毛摆动频率与小鼠气管在体纤毛摆动频率与一致。结论本实验建立的气管–支气管上皮细胞分离、ALI培养及纤毛摆动频率测量体系简便、稳定、高效、可靠,为探索气道疾病的致病和治疗机制创造了基础,亦可为其他物种气道上皮和(或)其他器官上皮的培养提供参考依据。 Objective To establish a method of air-liquid interface culture and ciliary beat frequency measurement of mouse tracheal-bronchial epithelial cells to simulate the physiological function of airway epithelium.Methods BALB/c mouse tracheal-bronchial epithelial cells were obtained by digestion with 1 mg/mL protease in cold temperature overnight, and the digestion time was optimized to ensure the quantity and viability of the obtained cells.After removing fibroblasts by differential velocity adhesion method, the cells were cultured into collagen coated Transwell inserts. Proliferating phase and air-liquid interface culture were promoted with different culture media. Results Cell numbers obtained by cold protease overnight digestion for 12 h, 14 h and 16 h were(1.78±0.33)×10~5,(1.93±0.26)×10~5 and(2.01±0.28)×10~5, respectively. Cell viability by trypan blue staining were(96.86±0.25)%,(94.73±1.63)% and(86.87±5.95)%,respectively. Cells were 100% confluent in Transwell chamber after 1-week proliferation, and the ciliary beat frequency was observed under microscope after 2-3 weeks of air-liquid interface culture. The cilia structure was confirmed by hematoxylin-eosin staining, electron microscopy and immunofluorescence. Ciliary beat frequency of the cells obtained by this method was consistent with that of mouse trachea in vivo, which further demonstrated its capacity in simulating the physiological function of airway epithelium. Conclusions The separation and air-liquid interface culture system as well as the ciliary beat frequency measurement method established in this experiment is simple, stable, efficient and reliable,which establishes a substantial foundation for exploring the pathogenesis and treatment mechanism of airway diseases. It can also provide reference for the culture of epithelium in the airway of other species and/or other organs.
作者 陈思 肖华 张伟 孔晨 陈长明 Venkataramana Sidhaye 李强 白冲 CHEN Si;XIAO Hua;ZHANG Wei;KONG Chen;CHEN Changming;LI Qiang;BAI Chong(Department of Respiratory and Critical Care Medicine,The First Affiliated Hospital of the Naval Medical University,Changhai Hospital,Shanghai 200433,P.R.China;Department of Emergency Medicine,The 948th Hospital of PLA,Wusu,Xinjiang 833000,P.R.China;Division of Pulmonary and Critical Care Medicine,School of Medicine,Johns Hopkins University,Baltimore,Maryland 21205,USA;Department of Respiratory and Critical Care Medicine,Dongfang Hospital,Tongji University,Shanghai 200120,P.R.China)
出处 《中国呼吸与危重监护杂志》 CAS CSCD 北大核心 2019年第4期362-368,共7页 Chinese Journal of Respiratory and Critical Care Medicine
基金 国家自然科学基金(81570019,81873405)
关键词 气道表面液体层 假复层纤毛柱状上皮 气-液界面 气管-支气管上皮细胞 原代培养 跨上皮电阻 纤毛摆动频率 Airway surface liquid layer Pseudostratified ciliated columnar epithelium Air-liquid interface Tracheal-bronchial epithelial cells Primary culture Trans-epithelium electrical resistance Ciliary beat frequency
  • 相关文献

参考文献11

二级参考文献62

  • 1Shao-hengHE JianZHENG Ming-keDUAN.Induction of mucin secretion from human bronchial tissue and epithelial cells by rhinovirus and lipopolysaccharide[J].Acta Pharmacologica Sinica,2004,25(9):1176-1181. 被引量:4
  • 2印根权,赵顺英,郭素萍,赵宇红,刘玺诚,江载芳.Galectin-7在哮喘患儿支气管上皮细胞凋亡中的作用[J].中华儿科杂志,2006,44(7):523-526. 被引量:9
  • 3Woodgett JR. Regulation and functions of the glycogen synthase kinase-3 subfamily. Semin Cancer Biol, 1994,5:269-275.
  • 4Lau KF, Miller CC, Anderton BH, et al. Expression analysis of glycogen synthase kinase-3 in human tissues.J Peptide Res, 1999,54:85-91.
  • 5Woodgett JR, Cohen P. Multisite phosphorylation of glycogen synthase. Molecular basis for the substrate specificity of glycogen synthase kinase-3 and casein kinase-II (glycogen synthase kinase-5). Biochim Biophys Acta, 1984,788:339-347.
  • 6Frame S, Cohen P. GSK3 takes center stage more than 20 years after its discovery. Chem J, 2001, 359: 1-16.
  • 7Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci, 2003,116: 1175-1186.
  • 8Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J, 1990,9:2431-2418.
  • 9Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase β in cellular signaling. Prog Neurobiol, 2001,65:391-426.
  • 10Hoeflich KP, Luo J, Rubie EA, et al. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation.Nature, 2000,406(6791):86-90.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部