期刊文献+

引入新闻短文本的个股走势预测模型 被引量:16

Predicting Stock Trends Based on News Events
原文传递
导出
摘要 【目的】结合深度学习,分析股市数值数据和财经新闻,提高股票涨跌预测准确率。【方法】建立基于事件的新闻分类模型,使用多输入的循环神经网络建立基于新闻事件、资金流向和公司财务的个股走势预测模型,提升股票预测准确率。【结果】引入新闻文本后模型预测准确率进一步提升,其中,采矿业准确率达到76.22%,医药制造业准确率达到77.36%。【局限】未验证新闻标题与新闻文章对股价影响程度的差异,且新闻事件的分类是基于一年内的新闻数据集进行人工划分,数据集不具备完整性和代表性。【结论】引入新闻事件作为股票预测模型的特征之一,能够提升预测的准确率。 [Objective] This paper tries to predict stock trends with the help of deep learning models, financial data and related news events.[Methods] First, we built a classification model for news events. Then, we used the recurrent neural networks to construct a forecasting model for stock trends based on news, capital flows and corporate financial reports.[Results] The prediction accuracy was improved by the proposed model(76.22% and 77.36% for the mining and pharmaceutical manufacturing industries).[Limitations] We did not examine the different impacts of news headlines and full-texts on stock market. We only chose news events from the past one year, which needs to be expanded.[Conclusions] News events could improve the accuracy of predicting stock trends.
作者 张梦吉 杜婉钰 郑楠 Zhang Mengji;Du Wanyu;Zheng Nan(School of Management Science and Engineering,Dongbei University of Finanee and Economics, Dalian 116025,China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2019年第5期11-18,共8页 Data Analysis and Knowledge Discovery
关键词 个股走势预测 深度学习 文本挖掘 Stock Trend Forecast Deep Learning Text Mining
  • 相关文献

参考文献2

二级参考文献23

  • 1劳兰珺,邵玉敏.行业股票价格指数波动特征的实证研究[J].南开管理评论,2005,8(5):4-8. 被引量:17
  • 2李朋,刘善存.中国股票市场波动率分解及长期趋势研究[J].南方经济,2006,35(7):5-15. 被引量:5
  • 3姜继娇,杨乃定.行业特征、市场情绪与收益波动[J].管理学报,2006,3(5):607-613. 被引量:7
  • 4张仁青.股票市场行业收益率与波动率研究[M]{H}成都:西南财经大学,2012.
  • 5Hearst M A. Text data mining: Issues, techniques, and the relationship to information access [R]. Presentation notes for UW/MS workshop on data mining, 1997.
  • 6Landauer T K, McNamara D S, Dennis S, et al. Handbook of latent semantic analysis [B]. Lawrence Erlbaum, 2007. Cortes C, Vapnik V. Support-vector networks [J]. Machine Learning, 1995, 20: 273-297.
  • 7Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation [J]. The Journal of Machine Learning Research, 2003, 3:993 1022.
  • 8Wuthrich B, Permunetilleke D, Leung S, et al. Daily prediction of major stock indices from textual www data [J]. HKIE Transactions, 1998, 5: 151-156.
  • 9Lavrenko V, Schrnill M, Lawrie D, et al. Mining of concurrent text and time series [C]. In KDD-2000 Workshop on Text Mining, 2000, 2000: 37-44.
  • 10Kloptchenko A, Eklund T, Karlsson J, et al. Combining data and text mining techniques for analysing financial reports [J]. Intelligent systems in accounting, finance and management, 2004, 12:29-41.

共引文献37

同被引文献165

引证文献16

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部