期刊文献+

一类三变量非线性和差分不等式中未知函数的估计

Estimation of Unknown Functions in a Class of Nonlinear Sum-Difference Inequalities in Three Independent Variables
原文传递
导出
摘要 Gronwall-Bellman型积分不等式的离散形式及其推广形式是研究和差分方程解的存在性、有界性和唯一性等定性性质的重要工具.研究了一类六重非线性和差分不等式,和号外含非常数因子,和项外包含了非常数项.利用差分算子的性质、求和技巧、变量替换技巧和积分中值定理等分析手段,给出了和差分不等式中未知函数的上界估计,推广了已有结果.最后举例说明所得结果可以用来研究三独立变量差分方程解的定性性质. The discrete form and generalizations form of Gronwall-Bellman type integral inequality are the important tools to study of existence,boundedness and uniqueness and other qualitative properties of solutions of the difference equations.This paper studies a class of nonlinear sum-difference inequalities,which include a nonconstant factor outside summarizing symbols and a nonconstant term outside summation term.The upper bounds of the unknown function in the sum-difference inequali ty is estimated explicitly using proper ties of difference operators,summing techniques,the techniques of change of variable,the method of amplification,the integral mean value theorem,and other analysis techniques,which generalized some known results.Finally an example is given to illustrate the results can be used to study the qualitative properties of solutions of the difference equations with three independent variables.
作者 陈立强 王五生 CHEN Li-qiang;WANG Wu-sheng(School of Mathematics and Statistics,Hechi University,Yizhou 546300,China)
出处 《数学的实践与认识》 北大核心 2019年第13期265-272,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(11561019,11161018) 广西自然科学基金(2016GXNSFAA380090) 广西教育厅教改项目(2017JGB366) 河池学院应用统计硕士专业学位建设基金课题
关键词 非线性和差分不等式 三独立变量和差分不等式 三阶差分方程 显式估计 nonlinear sum-difference inequality sum-difference inequality in three independent variables third order difference equation explicit estimation
  • 相关文献

参考文献3

二级参考文献36

  • 1BELLMAN R. The stability of solutions of linear differential equations[J]. Duke Math J, 1943, 10:643-647.
  • 2PACHPATTE B G. Explicit bound on a retarded integral inequality[J]. Math Inequal Appl, 2004(7): 7-11.
  • 3AGARWAL R R DENG S, ZHANG W. Generalization of a retarded Gronwall-like inequality and its applications[J]. Appl Math Comput, 2005, 165: 599-612.
  • 4MA Q H, PECARIC J. Estimates on solutions of some new nonlinear retarded Volterra-Fredholm type integral inequali- ties[J]. Nonlinear Anal, 2008, 69: 393-407.
  • 5ABDELDAIM A, YAKOUT M. On some new integral inequalities of Gronwall-Bellman-Pachpatte type[J]. Appl Math Comput, 2011, 217: 7887-7899.
  • 6WANG W S, HUANG D, LI X. Generalized Retarded Nonlinear Integral Inequalities Involving Iterated Integrals and an Application[J/OL]. J Inequ Appl, 2013: Article ID 376.
  • 7BIHARI IA. A generalization of a lemma of Bellman and its application to uniqueness problem of differential equation[J]. Acta Math Acad Sci Hung, 1956, 7: 81-94.
  • 8PACHPATTE B G. Inequalities for Differential and Integral Equations[M]. London: Academic Press, 1998.
  • 9LIPOVAN O. A retarded Gronwall-like inequality and its applications[J]. J Math Anal Appl, 2000, 252: 389-401.
  • 10CHEUNG W S. Some new nonlinear inequalities and applications to boundary value problems[J]. Nonlinear Anal, 2006, 64: 2112-2128.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部