期刊文献+

Effect of Beam Current and Diameter on Electron Probe Microanalysis of Carbonate Minerals 被引量:4

Effect of Beam Current and Diameter on Electron Probe Microanalysis of Carbonate Minerals
原文传递
导出
摘要 The effect of operating conditions on the time-dependent X-ray intensity variation is of great importance for the optimal EPMA conditions for accurate determinations of various elements in carbonate minerals. Beam diameters of 0, 1, 2, 5, 10, 15, and 20 μm, and beam currents of 3, 5, 10, 20,and 50 nA were tested. Ca, Mg, Zn, and Sr were found to be more sensitive to electron beam irradiation as compared to other elements, and small currents and large beam diameters minimized the timedependent X-ray intensity variations. We determined the optimal EPMA operating conditions for elements in carbonate: 10 μm and 5 nA for calcite;10 μm and 10 nA for dolomite;5 μm and 10 nA or 10 μm and 20 nA for strontianite;and 20 nA and 5 μm for other carbonate. Elements sensitive to electron beam irradiation should be determined first. In addition, silicate minerals are preferred as standards rather than carbonate minerals. The effect of operating conditions on the time-dependent X-ray intensity variation is of great importance for the optimal EPMA conditions for accurate determinations of various elements in carbonate minerals. Beam diameters of 0, 1, 2, 5, 10, 15, and 20 μm, and beam currents of 3, 5, 10, 20,and 50 nA were tested. Ca, Mg, Zn, and Sr were found to be more sensitive to electron beam irradiation as compared to other elements, and small currents and large beam diameters minimized the timedependent X-ray intensity variations. We determined the optimal EPMA operating conditions for elements in carbonate: 10 μm and 5 nA for calcite; 10 μm and 10 nA for dolomite; 5 μm and 10 nA or 10 μm and 20 nA for strontianite; and 20 nA and 5 μm for other carbonate. Elements sensitive to electron beam irradiation should be determined first. In addition, silicate minerals are preferred as standards rather than carbonate minerals.
出处 《Journal of Earth Science》 SCIE CAS CSCD 2019年第4期834-842,共9页 地球科学学刊(英文版)
基金 supported by the Natural Science Foundation of China (No. 41403022) the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUGL150401)
关键词 CARBONATE minerals:electron probe MICROANALYSIS characteristic X-ray TIME-DEPENDENT intensity BEAM current BEAM DIAMETER carbonate minerals electron probe microanalysis characteristic X-ray time-dependent intensity beam current beam diameter
  • 相关文献

参考文献3

二级参考文献51

共引文献21

同被引文献56

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部