期刊文献+

Enhanced Degradation of Methyl Parathion in the Ligand Stabilized Soluble Mn(Ⅲ)-Sulfite System 被引量:1

Enhanced Degradation of Methyl Parathion in the Ligand Stabilized Soluble Mn(Ⅲ)-Sulfite System
原文传递
导出
摘要 The ligand-stabilized soluble Mn(Ⅲ) recognized as active intermediate can potentially mediate the attenuation of contaminants. In this study,the abiotic degradation behaviors of methyl parathion in the ligand stabilized Mn(Ⅲ)-sulfite system were investigated. The results showed that the yield of soluble Mn(Ⅲ) produced from the redox reaction of MnO2 and oxalic acid was dependent linearly on the dosage of Mn O2 and caused the decomposition of methyl parathion up to 50.1% in Mn(Ⅲ)-sulfite system after 30 minutes. The fitted pseudo-first-order reaction constants of methyl parathion degradation increased with the increasing of the amount of produced Mn(Ⅲ) but was not effected linearly by the addition of sulfite. Other ligands,including pyrophosphate and oxalic acid,acted as effective complexing agents to stabilize soluble Mn(Ⅲ),and exhibited competitive effect on methyl parathion degradation with sulfite. The formation of Mn(Ⅲ)-sulfite complexes is the critical step in the system to produce abundant reactive oxygen species identified as SO3·-to facilitate methyl parathion degradation. The hydrolysis and oxidation of methyl parathion were acknowledged as two primary transformation mechanisms in Mn(Ⅲ)-sulfite system. These findings indicate that naturally ligands-stabilized soluble Mn(Ⅲ) can be generated and could oxidatively decompose organophosphate pesticides such as methyl parathion. The ligand-stabilized soluble Mn(Ⅲ) recognized as active intermediate can potentially mediate the attenuation of contaminants. In this study, the abiotic degradation behaviors of methyl parathion in the ligand stabilized Mn(Ⅲ)-sulfite system were investigated. The results showed that the yield of soluble Mn(Ⅲ) produced from the redox reaction of MnO2 and oxalic acid was dependent linearly on the dosage of Mn O2 and caused the decomposition of methyl parathion up to 50.1% in Mn(Ⅲ)-sulfite system after 30 minutes. The fitted pseudo-first-order reaction constants of methyl parathion degradation increased with the increasing of the amount of produced Mn(Ⅲ) but was not effected linearly by the addition of sulfite. Other ligands, including pyrophosphate and oxalic acid,acted as effective complexing agents to stabilize soluble Mn(Ⅲ), and exhibited competitive effect on methyl parathion degradation with sulfite. The formation of Mn(Ⅲ)-sulfite complexes is the critical step in the system to produce abundant reactive oxygen species identified as SO3·-to facilitate methyl parathion degradation. The hydrolysis and oxidation of methyl parathion were acknowledged as two primary transformation mechanisms in Mn(Ⅲ)-sulfite system. These findings indicate that naturally ligands-stabilized soluble Mn(Ⅲ) can be generated and could oxidatively decompose organophosphate pesticides such as methyl parathion.
出处 《Journal of Earth Science》 SCIE CAS CSCD 2019年第4期861-869,共9页 地球科学学刊(英文版)
基金 supported by the National Natural Science Foundation of China (Nos. 41772251, 41702267 and 41521001) the State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (No. FSKLCCA1511) China Postdoctoral Science Foundation (No. 2017M612536) the “111” Project of the Ministry of Education of China
关键词 SOLUBLE Mn(Ⅲ) SULFITE METHYL PARATHION degradation mechanism soluble Mn(Ⅲ) sulfite methyl parathion degradation mechanism
  • 相关文献

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部