期刊文献+

3D Object Detection Incorporating Instance Segmentation and Image Restoration

3D Object Detection Incorporating Instance Segmentation and Image Restoration
原文传递
导出
摘要 Nowadays, 3D object detection, which uses the color and depth information to find object localization in the 3D world and estimate their physical size and pose, is one of the most important 3D perception tasks in the field of computer vision. In order to solve the problem of mixed segmentation results when multiple instances appear in one frustum in the F-PointNet method and in the occlusion that leads to the loss of depth information, a 3D object detection approach based on instance segmentation and image restoration is proposed in this paper. Firstly, instance segmentation with Mask R-CNN on an RGB image is used to avoid mixed segmentation results. Secondly, for the detected occluded objects, we remove the occluding object first in the depth map and then restore the empty pixel region by utilizing the Criminisi Algorithm to recover the missing depth information of the object. The experimental results show that the proposed method improves the average precision score compared with the F-PointNet method. Nowadays, 3 D object detection, which uses the color and depth information to find object localization in the 3 D world and estimate their physical size and pose, is one of the most important 3 D perception tasks in the field of computer vision. In order to solve the problem of mixed segmentation results when multiple instances appear in one frustum in the F-PointNet method and in the occlusion that leads to the loss of depth information, a 3 D object detection approach based on instance segmentation and image restoration is proposed in this paper. Firstly, instance segmentation with Mask R-CNN on an RGB image is used to avoid mixed segmentation results. Secondly, for the detected occluded objects, we remove the occluding object first in the depth map and then restore the empty pixel region by utilizing the Criminisi Algorithm to recover the missing depth information of the object. The experimental results show that the proposed method improves the average precision score compared with the F-PointNet method.
出处 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2019年第4期360-368,共9页 武汉大学学报(自然科学英文版)
基金 Supported by the National Natural Science Foundation of China(61603242) Collaborative Innovation Center for Economics Crime Investigation and Prevention Technology of Jiangxi Province(JXJZXTCX-030)
关键词 IMAGE processing 3D OBJECT DETECTION instance SEGMENTATION DEPTH information IMAGE RESTORATION image processing 3D object detection instance segmentation depth information image restoration
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部